Nothing Special   »   [go: up one dir, main page]

Skip to main content

The VAST Collaborative Multimodal Annotation Platform: Annotating Values

  • Conference paper
  • First Online:
Information Systems and Technologies (WorldCIST 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 802))

Included in the following conference series:

  • 154 Accesses

Abstract

In this paper, we present the VAST Collaborative, Multimodal, Web Annotation Tool. It is a collaborative, web-based annotation tool built upon the Ellogon infrastructure, adapted to the content creation and annotation needs of digital cultural heritage. With the help of an annotation methodology and guidelines, the tool has been used to analyse and annotate intangible artifacts (mainly narratives) with moral values. This paper presents the tool and its capabilities, and an evaluation study for assessing its usability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://warmestproject.eu/tools-survey/art3mis/.

  2. 2.

    https://trompamusic.github.io/music-scholars-annotator/.

  3. 3.

    https://platform.vast-project.eu/ .

  4. 4.

    https://platform.vast-project.eu/ .

  5. 5.

    The VAST Semantic Annotation Platform: https://github.com/vast-project/ellogon-annotation-tool.

References

  1. Aljabri, M., AlAmir, M., AlGhamdi, M., Abdel-Mottaleb, M., Collado-Mesa, F.: Towards a better understanding of annotation tools for medical imaging: a survey. Multimedia Tools Appli. 81(18), 25877–25911 (2022). https://doi.org/10.1007/s11042-022-12100-1

    Article  Google Scholar 

  2. Apollonio, F.I., Gaiani, M., Bertacchi, S.: Managing cultural heritage with integrated services platform. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2019)

    Google Scholar 

  3. Arampatzakis, V., et al.: Art3mis: ray-based textual annotation on 3d cultural objects. In: CAA 2021 International Conference “Digital Crossroads” (2021)

    Google Scholar 

  4. Bontcheva, K., et al.: Gate teamware: a web-based, collaborative text annotation framework. Lang. Resour. Eval. 47(4), 1007–1029 (2013)

    Article  MathSciNet  Google Scholar 

  5. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)

    Google Scholar 

  6. Cassidy, S., Schmidt, T.: Tools for Multimodal Annotation, pp. 209–227. Springer Netherlands, Dordrecht (2017). https://doi.org/10.1007/978-94-024-0881-2_7

  7. de Castilho, R.E., Biemann, C., Gurevych, I., Yimam, S.M.: Webanno: a flexible, web-based annotation tool for clarin. In: Proceedings of the CLARIN Annual Conference (CAC) 2014 (Oct 2014)

    Google Scholar 

  8. Ferrara, A., Montanelli, S., Ruskov, M.: Detecting the semantic shift of values in cultural heritage document collections (short paper). In: Damiano, R., Ferilli, S., Striani, M., Silvello, G. (eds.) Proceedings of the 1st Workshop on Artificial Intelligence for Cultural Heritage, pp. 35–43. No. 3286 in CEUR Workshop Proceedings, Aachen (2022). https://ceur-ws.org/Vol-3286/04_paper.pdf

  9. Garozzo, R., Murabito, F., Santagati, C., Pino, C., Spampinato, C.: Culto: An ontology-based annotation tool for data curation in cultural heritage. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42, 267–274 (2017)

    Google Scholar 

  10. Gaur, E., Saxena, V., Singh, S.K.: Video annotation tools: A review. In: 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), pp. 911–914 (2018). https://doi.org/10.1109/ICACCCN.2018.8748669

  11. Hornbæk, K., Hertzum, M.: Technology acceptance and user experience: A review of the experiential component in hci, vol. 24(5) (Oct 2017). https://doi.org/10.1145/3127358, https://doi.org/10.1145/3127358

  12. Katakis, I.M., Petasis, G., Karkaletsis, V.: CLARIN-EL web-based annotation tool. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 4505–4512. European Language Resources Association (ELRA), Portorož, Slovenia (May 2016). https://aclanthology.org/L16-1713

  13. Lewis, J.R.: The system usability scale: past, present, and future. Inter. J. Hum.-Comput. Interact. 34(7), 577–590 (2018). https://doi.org/10.1080/10447318.2018.1455307

    Article  Google Scholar 

  14. Neves, M., Ševa, J.: An extensive review of tools for manual annotation of documents. Briefings Bioinform. 22(1), 146–163 (2019). https://doi.org/10.1093/bib/bbz130

  15. Ntogramatzis, A.F., Gradou, A., Petasis, G., Kokol, M.: The ellogon web annotation tool: Annotating moral values and arguments. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 3442–3450. European Language Resources Association, Marseille, France (Jun 2022), https://aclanthology.org/2022.lrec-1.368

  16. Pande, B., Padamwar, K., Bhattacharya, S., Roshan, S., Bhamare, M.: A review of image annotation tools for object detection. In: 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), pp. 976–982 (2022). https://doi.org/10.1109/ICAAIC53929.2022.9792665

  17. Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: Brat: a web-based tool for nlp-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 102–107. Association for Computational Linguistics (2012)

    Google Scholar 

  18. Sweller, J., van Merriënboer, J.J.G., Paas, F.: Cognitive architecture and instructional design: 20 Years Later. Educ. Psycho. Rev. 31(2), 261–292 (2019). https://doi.org/10.1007/s10648-019-09465-5, http://link.springer.com/10.1007/s10648-019-09465-5

  19. Tan, L.: A survey of nlp annotation platforms (2020). https://github.com/alvations/annotate-questionnaire

  20. Theodosiou, Z., Georgiou, O., Tsapatsoulis, N., Kounoudes, A., Milis, M.: Annotation of cultural heritage documents based on XML dictionaries and data clustering. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 306–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16873-4_23

    Chapter  Google Scholar 

  21. Tkachenko, M., Malyuk, M., Holmanyuk, A., Liubimov, N.: Label Studio: Data labeling software (2020-2022). https://github.com/heartexlabs/label-studio, open source software

  22. Tomašević, D., Wells, S., Ren, I.Y., Volk, A., Pesek, M.: Exploring annotations for musical pattern discovery gathered with digital annotation tools. J. Math. Music 15(2), 194–207 (2021). https://doi.org/10.1080/17459737.2021.1943026

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme, in the context of VAST project, under grant agreement No 101004949. This paper reflects only the view of the authors and the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Petasis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petasis, G., Ruskov, M., Gradou, A., Kokol, M. (2024). The VAST Collaborative Multimodal Annotation Platform: Annotating Values. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F., Colla, V. (eds) Information Systems and Technologies. WorldCIST 2023. Lecture Notes in Networks and Systems, vol 802. Springer, Cham. https://doi.org/10.1007/978-3-031-45651-0_21

Download citation

Publish with us

Policies and ethics