Nothing Special   »   [go: up one dir, main page]

Skip to main content

PETS: Predicting Efficiently Using Temporal Symmetries in Temporal PGMs

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2023)

Abstract

Time in Bayesian Networks is concrete: In medical applications, a timestep can correspond to one second. To proceed in time, temporal inference algorithms answer conditional queries. But the interface algorithm simulates iteratively into the future making predictions costly and intractable for applications. We present an exact, GPU-optimizable approach exploiting symmetries over time during answering prediction queries by constructing a matrix for the underlying temporal process. Additionally, we construct a vector capturing the probability distribution at the current timestep. Then, we can time-warp into the future by matrix exponentiation. We show an order of magnitude speedup over the interface algorithm. The work-heavy preprocessing step can be done offline, and the runtime of prediction queries is significantly reduced. Now, we can handle application problems that could not be handled before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankan, A., Panda, A.: Pgmpy: probabilistic graphical models using python. In: Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer (2015)

    Google Scholar 

  2. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 33–42 (1998)

    Google Scholar 

  3. Dagum, P., Galper, A., Horvitz, E.: Dynamic network models for forecasting. In: Uncertainty in Artificial Intelligence, pp. 41–48. Elsevier (1992)

    Google Scholar 

  4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Gehrke, M., Braun, T., Möller, R.: Lifted dynamic junction tree algorithm. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 55–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_5

    Chapter  Google Scholar 

  6. Gehrke, M., Braun, T., Möller, R.: Lifted temporal maximum expected utility. In: Meurs, M.-J., Rudzicz, F. (eds.) Canadian AI 2019. LNCS (LNAI), vol. 11489, pp. 380–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18305-9_33

    Chapter  Google Scholar 

  7. Hartwig, M.: New methods for efficient query answering in gaussian probabilistic graphical models. Ph.D. thesis, University of Lübeck (2022)

    Google Scholar 

  8. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. arXiv preprint arXiv:1205.2637 (2012)

  9. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 50(2), 157–194 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. University of California, Berkeley (2002)

    Google Scholar 

  12. Pearl, J.: Probabilistic reasoning using graphs. In: Bouchon, B., Yager, R.R. (eds.) IPMU 1986. LNCS, vol. 286, pp. 200–202. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18579-8_19

    Chapter  Google Scholar 

  13. Pearl, J.: Bayesian networks (2011)

    Google Scholar 

  14. Russell, S.J., Norvig, P.: Artificial Intelligence a Modern Approach. Pearson Education, Inc. (2010)

    Google Scholar 

  15. Singla, P., Domingos, P.M.: Lifted first-order belief propagation. In: AAAI, vol. 8, pp. 1094–1099 (2008)

    Google Scholar 

  16. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the Tenth Canadian Conference on Artificial Intelligence (1994)

    Google Scholar 

Download references

Acknowledgements

The research for this paper was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2176 ‘Understanding Written Artefacts: Material, Interaction and Transmission in Manuscript Cultures’, project no. 390893796. The research was conducted within the scope of the Centre for the Study of Manuscript Cultures (CSMC) at Universität Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Andreas Marwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marwitz, F.A., Möller, R., Gehrke, M. (2024). PETS: Predicting Efficiently Using Temporal Symmetries in Temporal PGMs. In: Bouraoui, Z., Vesic, S. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2023. Lecture Notes in Computer Science(), vol 14294. Springer, Cham. https://doi.org/10.1007/978-3-031-45608-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45608-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45607-7

  • Online ISBN: 978-3-031-45608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics