Nothing Special   »   [go: up one dir, main page]

Skip to main content

FetMRQC: Automated Quality Control for Fetal Brain MRI

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2023)

Abstract

Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where large and unpredictable fetal motion can lead to substantial artifacts in the acquired images. Existing methods for fetal brain quality assessment operate at the slice level, and fail to get a comprehensive picture of the quality of an image, that can only be achieved by looking at the entire brain volume. In this work, we propose FetMRQC, a machine learning framework for automated image quality assessment tailored to fetal brain MRI, which extracts an ensemble of quality metrics that are then used to predict experts’ ratings. Based on the manual ratings of more than 1000 low-resolution stacks acquired across two different institutions, we show that, compared with existing quality metrics, FetMRQC is able to generalize out-of-domain, while being interpretable and data efficient. We also release a novel manual quality rating tool designed to facilitate and optimize quality rating of fetal brain images.

Our tool, along with all the code to generate, train and evaluate the model is available at https://github.com/Medical-Image-Analysis-Laboratory/fetal_brain_qc/.

TS is supported by the Era-net Neuron MULTIFACT project (SNSF 31NE30_203977), OE is supported by the Swiss National Science Foundation (SNSF #185872), the NIMH (RF1MH12186), and the CZI (EOSS5/‘NiPreps’). YG acknowledges support from the SICPA foundation and EE is supported by the Instituto de Salud Carlos III (ISCIII) (AC21_2/00016). We acknowledge access to the facilities and expertise of the CIBM Center for Biomedical Imaging, a Swiss research center of excellence founded and supported by CHUV, UNIL, EPFL, UNIGE and HUG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the pre-trained models throughout these experiments, as we want to test the off-the-shelf value of these IQMs.

  2. 2.

    The method of Liao et al. [22] was not included because their code is not publicly available, and we could not get in contact with the authors.

References

  1. Gholipour, A., et al.: Fetal MRI: a technical update with educational aspirations. Conc. Magn. Reson. Part A 43(6), 237–266 (2014)

    Article  Google Scholar 

  2. Saleem, S.N.: Fetal MRI: an approach to practice: a review. J. Adv. Res. 5(5), 507–523 (2014)

    Article  Google Scholar 

  3. Power, J.D., et al.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3), 2142–2154 (2012)

    Article  Google Scholar 

  4. Reuter, M., et al.: Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage 107, 107–115 (2015)

    Article  Google Scholar 

  5. Alexander-Bloch, A., et al.: Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI. Hum. Brain Mapp. 37(7), 2385–2397 (2016)

    Article  Google Scholar 

  6. Mortamet, B., et al.: Automatic quality assessment in structural brain magnetic resonance imaging. Magn. Reson. Med. 62(2), 365–372 (2009)

    Article  Google Scholar 

  7. Niso, G., Botvinik-Nezer, R., et al.: Open and reproducible neuroimaging: from study inception to publication. NeuroImage, 119623 (2022)

    Google Scholar 

  8. Esteban, O., et al.: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12(9), e0184661 (2017)

    Article  Google Scholar 

  9. Klapwijk, E.T., et al.: Qoala-t: a supervised-learning tool for quality control of freesurfer segmented MRI data. Neuroimage 189, 116–129 (2019)

    Article  Google Scholar 

  10. Vogelbacher, C., et al.: Lab-qa2go: a free, easy-to-use toolbox for the quality assessment of magnetic resonance imaging data. Front. Neurosci. 13, 688 (2019)

    Article  Google Scholar 

  11. Samani, Z.R., et al.: Qc-automator: deep learning-based automated quality control for diffusion MR images. Front. Neurosci. 13, 1456 (2020)

    Article  Google Scholar 

  12. Garcia, M., et al.: BrainQCNet: a deep learning attention-based model for multi-scale detection of artifacts in brain structural mri scans. bioRxiv (2022)

    Google Scholar 

  13. Kuklisova-Murgasova, M., et al.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  14. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  15. Tourbier, S., et al.: Medical-image-analysis-laboratory/mialsuperresolutiontoolkit: MIAL super-resolution toolkit v2.0.1. Zenodo (2020). https://zenodo.org/record/4392788

  16. Uus, A., et al.: Retrospective motion correction in foetal MRI for clinical applications: existing methods, applications and integration into clinical practice. Br. J. Radiol. 95, 20220071 (2022)

    Article  Google Scholar 

  17. Xu, J., et al.: NeSVoR: implicit neural representation for slice-to-volume reconstruction in MRI. IEEE Trans. Med. Imaging 42, 1707–1719 (2023)

    Article  Google Scholar 

  18. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020)

    Article  Google Scholar 

  19. Uus, A.U., et al.: Automated 3d reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21–36 weeks ga range. Med. Image Anal. 80, 102484 (2022)

    Article  Google Scholar 

  20. Lala, S., et al.: A deep learning approach for image quality assessment of fetal brain mri. In: ISMRM, Québec, Canada, Montréal, p. 839 (2019)

    Google Scholar 

  21. Xu, J., et al.: Semi-supervised learning for fetal brain MRI quality assessment with ROI consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 386–395. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_37

    Chapter  Google Scholar 

  22. Liao, L., et al.: Joint image quality assessment and brain extraction of fetal MRI using deep learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 415–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_40

    Chapter  Google Scholar 

  23. Gagoski, B., et al.: Automated detection and reacquisition of motion-degraded images in fetal haste imaging at 3 t. Magn. Reson. Med. 87(4), 1914–1922 (2022)

    Article  Google Scholar 

  24. Gorgolewski, K.J., et al.: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

  25. Ranzini, M., et al.: Monaifbs: monai-based fetal brain MRI deep learning segmentation. arXiv preprint arXiv:2103.13314, 2021

  26. de Dumast, P. et al.: Translating fetal brain magnetic resonance image super-resolution into the clinical environment. In: European Congress of Magnetic Resonance in Neuropediatrics (2020)

    Google Scholar 

  27. Legoretta, I., Samal, S., et al.: Github repository: automatic fetal brain MRI quality assessment. https://github.com/FNNDSC/pl-fetal-brain-assessment

  28. Tustison, N., et al.: N4itk: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  29. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2, 285–318 (1988)

    Article  Google Scholar 

  30. Varoquaux, G., et al.: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage 145, 166–179 (2017)

    Article  Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sanchez .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3. Detailed description of the metrics proposed for FetMRQC.
Table 4. Detailed description of the data from CHUV and BCNatal. Field refers to the magnetic field of the scanner, TR is the repetition time and TE is the echo time and FoV is the Field of View. All scanners used a Half-Fourier Acquisition Single-shot Turbo spin Echo imaging (HASTE) sequence.
Table 5. Parameters automatically optimized by the inner loop of the nested CV.
Table 6. Selected hyperparameters for the different nested cross validation procedures. The in-domain experiment uses 5-fold nested cross-validation, while the out-of-domain experiment splits data by site (CHUV and BCNatal) and as a result has only two folds. The list of possible parameters is provided in Table 5.
Table 7. Correlation matrix between all 75 IQMs, evaluated on the entire dataset. Blue refers to negative correlations, and red to positive ones.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanchez, T., Esteban, O., Gomez, Y., Eixarch, E., Cuadra, M.B. (2023). FetMRQC: Automated Quality Control for Fetal Brain MRI. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2023. Lecture Notes in Computer Science, vol 14246. Springer, Cham. https://doi.org/10.1007/978-3-031-45544-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45544-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45543-8

  • Online ISBN: 978-3-031-45544-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics