Nothing Special   »   [go: up one dir, main page]

Skip to main content

Crop Row Line Detection with Auxiliary Segmentation Task

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Autonomous robots for agricultural tasks have been researched to great extent in the past years as they could result in a great improvement of field efficiency. Navigating an open crop field still is a great challenge; RTK-GNSS is a excellent tool to track the robot’s position, but it needs precise mapping and planning while also being expensive and signal dependent. As such, onboard systems that can sense the field directly to guide the robot are a good alternative. Those systems detect the rows with adequate image techniques and estimate the position by applying algorithms to the obtained mask, such as the Hough transform or linear regression. In this paper, a direct approach is presented by training a neural network model to obtain the position of crop lines directly from an RGB image. While, usually, the camera in such systems are looking down to the field, a camera near the ground is proposed to take advantage of tunnels formed between rows. A simulation environment for evaluating both the model’s performance and camera placement was developed and made available in Github, and two datasets to train the models are proposed. The results are shown across different resolutions and stages of plant growth, indicating the system’s capabilities and limitations.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; The National Council for Scientific and Technological Development - CNPq under project number 314121/2021-8; and Fundação de Apoio a Pesquisa do Rio de Janeiro (FAPERJ) - APQ1 Program - E-26/010.001551/2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, A., Nardi, L., Chebrolu, N., Stachniss, C.: Visual servoing-based navigation for monitoring row-crop fields. In: 2020 IEEE International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  2. Nakarmi, A.D., Tang, L.: Within-row spacing sensing of maize plants using 3d computer vision. Biosys. Eng. 125, 54–64 (2014)

    Article  Google Scholar 

  3. McCool, C.S., et al.: Efficacy of mechanical weeding tools: a study into alternative weed management strategies enabled by robotics. IEEE Robot. Automat. Lett. 1 (2018)

    Google Scholar 

  4. Barbosa, G.B.P.: Robust vision-based autonomous crop row navigation for wheeled mobile robots in sloped and rough terrains. Dissertação de mestrado em engenharia elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro (2022)

    Google Scholar 

  5. Ponnambalam, V.R., Bakken, M., Moore, R.J.D., Gjevestad, J.G.O., From, P.J.: Autonomous crop row guidance using adaptive multi-ROI in strawberry fields. Sensors 20(18), 5249 (2020)

    Article  Google Scholar 

  6. Ahmadi, A., Halstead, M., McCool, C.: Towards autonomous visual navigation in arable fields (2021)

    Google Scholar 

  7. Shalal, N., Low, T., McCarthy, C., Hancock, N.: Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion - part a: tree detection. Comput. Electron. Agric. 119, 254–266 (2015)

    Article  Google Scholar 

  8. English, A., Ross, P., Ball, D., Upcroft, B., Corke, P.: Learning crop models for vision-based guidance of agricultural robots. In: 2015 International Conference on Intelligent Robots and Systems (IROS) (2015)

    Google Scholar 

  9. De Silva, R., Cielniak, G., Wang, G., Gao, J.: Deep learning-based crop row following for infield navigation of agri-robots (2022)

    Google Scholar 

  10. Xaud, M.F.S., Leite, A.C., From, P.J.: Thermal image based navigation system for skid-steering mobile robots in sugarcane crops. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE (2019)

    Google Scholar 

  11. Martins, F.F., et al.: Sistema de navegação autônoma para o robô agrícola soybot. In: Procedings do XV Simpósio Brasileiro de Automação Inteligente. SBA Sociedade Brasileira de Automática (2021)

    Google Scholar 

  12. Liebel, L., Körner, M.: Auxiliary tasks in multi-task learning (2018)

    Google Scholar 

  13. Tangseng, P., Wu, Z., Yamaguchi, K.: Looking at outfit to parse clothing (2017)

    Google Scholar 

  14. Chen, L.-C., Zhu, Y., Papandreou, G., Schroof, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation (2018)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 382–386 (2016)

    Google Scholar 

  16. Jesus, J.C., Bottega, J.A., Cuadros, M.A., Gamarra, D.F.: Deep deterministic policy gradient for navigation of mobile robots in simulated environments. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 362–367 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Ferreira da Costa or Wouter Caarls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Costa, I.F., Caarls, W. (2023). Crop Row Line Detection with Auxiliary Segmentation Task. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics