Abstract
The paper presents a method for the privacy-preserving learning of random forests from private data of three parties, where not even the decision trees, i.e., neither the tree structures nor their parameters (the annotations of attributes and attribute values), are disclosed to any of the parties. To make this practical for realistically size data, a custom protocol is needed for the private comparison of two numbers, such that the numbers themselves are only available in shares and are not known to either party. Experiments with five datasets indicate that the overall protocol matches classical random forests in accuracy and can handle datasets of realistic size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Notice that we follow the original definition of random forests by Breiman (2001).
- 2.
- 3.
References
Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-preserving decision trees training and prediction. Cryptology ePrint Archive, Paper 2021/768 (2021). https://eprint.iacr.org/2021/768
Althaus, E., Dousti, M.S., Kramer, S., Rassau, N.J.P.: Fast private parameter learning and evaluation for sum-product networks. CoRR abs/2104.07353 (2021). https://arxiv.org/abs/2104.07353
Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 805–817. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978331
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006
Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining, vol. 14, pp. 1–8. Australian Computer Society Inc. (2002)
Emekci, F., Sahin, O., Agrawal, D., El Abbadi, A.: Privacy preserving decision tree learning over multiple parties. Data Knowl. Eng. 63(2), 348–361 (2007). https://www.sciencedirect.com/science/article/pii/S0169023X07000365
Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge regression over distributed data from lhe. Cryptology ePrint Archive, Report 2017/979 (2017). https://eprint.iacr.org/2017/979
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. Association for Computing Machinery, New York, NY, USA (1987). https://doi.org/10.1145/28395.28420
Goldreich, O.: Foundations of Cryptography - Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)
de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical secure decision tree learning in a teletreatment application. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_12
Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_3
Mohassel, P., Rindal, P.: Aby 3: a mixed protocol framework for machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52, October 2018
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38 (2017). https://doi.org/10.1109/SP.2017.12
Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy, pp. 334–348 (2013). https://doi.org/10.1109/SP.2013.30
Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. CoRR abs/1801.03239 (2018). http://arxiv.org/abs/1801.03239
Samet, S., Miri, A.: Privacy preserving ID3 using Gini index over horizontally partitioned data. In: 2008 IEEE/ACS International Conference on Computer Systems and Applications, pp. 645–651 (2008). https://doi.org/10.1109/AICCSA.2008.4493598
Scikit-learn: random forest classifier. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
Vaidya, J., Clifton, C., Kantarcioglu, M., Patterson, A.S.: Privacy-preserving decision trees over vertically partitioned data 2(3) (2008). https://doi.org/10.1145/1409620.1409624
Wang, K., Xu, Y., She, R., Yu, P.S.: Classification spanning private databases. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, p. 293–298. AAAI’06, AAAI Press (2006)
Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, USA (1982)
Acknowledgements
This work was partly funded by the Carl-Zeiss-Stiftung as part of the CZS Durchbrueche project under grant number [P2021-02-014].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bammert, LM., Kramer, S., Cerrato, M., Althaus, E. (2023). Privacy-Preserving Learning of Random Forests Without Revealing the Trees. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-45275-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45274-1
Online ISBN: 978-3-031-45275-8
eBook Packages: Computer ScienceComputer Science (R0)