Nothing Special   »   [go: up one dir, main page]

Skip to main content

iPyrDAE: Image Pyramid-Based Denoising Autoencoder for Infrared Breast Images

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Abstract

An early and accurate breast cancer diagnosis will reduce the death rate and improve survival chances. Thermography is a promising non-invasive early detection modality for breast cancer. Artificial intelligence-based classification systems are being used to classify thermographic infrared images. The success of these classification systems also depends on the quality of infrared images. However, the thermographic images acquired using digital infrared cameras are inevitably degraded by noise. In this paper, we propose novel denoising auto-encoders using image pyramids. The denoising auto-encoders are forced to learn the non-local noises by corrupting the input images in the image pyramid domain. We also propose a method to estimate the noise probability distribution in infrared images using statistical methods. The proposed denoising auto-encoder framework will learn better data representations from the corrupted images generated using image pyramids and estimated noise probability distribution. The Experimentation with four different infrared breast image data sets demonstrates robust representation learning by the agent showing promising improvements in the peak signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mehrotra, R., Yadav, K.: Breast cancer in India: present scenario and the challenges ahead. World J. Clin. Oncol. 13(3), 209–218 (2022)

    Article  Google Scholar 

  2. Sarigoz, T., Ertan, T.: Role of dynamic thermography in diagnosis of nodal involvement in patients with breast cancer: a pilot study. Infrared Phys. Technol. 108, 103336 (2020)

    Article  Google Scholar 

  3. Budzan, S., Wyżgolik, R.: Remarks on noise removal in infrared images. Meas. Autom. Monit. 61(6), 187–190 (2015)

    Google Scholar 

  4. Prabha, S., Sujatha, C. M., Ramakrishnan, S.: Asymmetry analysis of breast thermograms using BM3D technique and statistical texture features. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–4 (2014). https://doi.org/10.1109/ICIEV.2014.6850730

  5. Kafieh, R., Rabbani, H.: Wavelet-based medical infrared image noise reduction using local model for signal and noise. In: 2011 IEEE Statistical Signal Processing Workshop (SSP), pp. 549–552 (2011)

    Google Scholar 

  6. Moraes, M.S., Borchartt, T.B., Conci, A., MacHenry, T.: Using wavelets on denoising infrared medical images. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1791–1798 (2015)

    Google Scholar 

  7. Wippig, D., Klauer, B., Zeidler, H.C.: Denoising of infrared images by wavelet thresholding. In: Elleithy, K., Sobh, T., Mahmood, A., Iskander, M., Karim, M. (eds.) Advances in Computer, Information, and Systems Sciences, and Engineering, pp. 103–108. Springer, Dordrecht (2007). https://doi.org/10.1007/1-4020-5261-8_18

    Chapter  Google Scholar 

  8. Indumathi, T.V., Sannihith, K., Krishna, S., Remya Ajai, A.S.: Effect of co-occurrence filtering for recognizing abnormality from breast thermograms. In: 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 1170–1175 (2021)

    Google Scholar 

  9. Li, Q., Li, W., Zhang, J., Xu, Z.: An improved k-nearest neighbour method to diagnose breast cancer. Analyst. 143(12), 2807–2811 (2018)

    Article  Google Scholar 

  10. Lai, F., Kandukuri, J., Yuan, B., Zhang, Z., Jin, M.: Thermal image enhancement through the deconvolution methods for low-cost infrared cameras. Quant. Infrared Thermogr. J. 15(2), 223–239 (2018)

    Google Scholar 

  11. Zhang, Z., Zheng, W., Ma, Z., Yin, L., Xie, M., Wu, Y.: Infrared star image denoising using regions with deep reinforcement learning. Infrared Phys. Technol. 117, 103819 (2021)

    Article  Google Scholar 

  12. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021)

    Article  Google Scholar 

  13. Silva, L.F., Saade, D.C.M., Sequeiros, G.O., Silva, A.C., Paiva, A.C., Bravo, R.S., et al.: A new database for breast research with infrared image. J. Med. Imaging Health Inform. 4(1), 92–100 (2014)

    Article  Google Scholar 

  14. Bhowmik, M.K., Gogoi, U.R., Majumdar, G., Bhattacharjee, D., Datta, D., Ghosh, A.K.: Designing of ground-truth-annotated DBT-TU-JU breast thermogram database toward early abnormality prediction. IEEE J. Biomed. Health Inform. 22(4), 1238–1249 (2017)

    Article  Google Scholar 

  15. Gomez, L., Ospina, R., Frery, A.C.: Unassisted quantitative evaluation of despeckling filters. Remote Sens. 9(4), 389 (2017)

    Article  Google Scholar 

  16. Sun, Q., Liu, X., Bourennane, S., Liu, B.: Multiscale denoising autoencoder for improvement of target detection. Int. J. Remote Sens. 42(8), 3002–3016 (2021)

    Article  Google Scholar 

  17. Yan, L., et al.: Infrared and visible image fusion via octave Gaussian pyramid framework. Sci. Rep. 11(1), 1–12 (2021)

    Google Scholar 

  18. Wang, Z., Cui, Z., Zhu, Y.: Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Comput. Biol. Med. 123, 103823 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raghavan, K., Sivaselavan, B., Kamakoti, V. (2023). iPyrDAE: Image Pyramid-Based Denoising Autoencoder for Infrared Breast Images. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics