Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pre-training with Simulated Ultrasound Images for Breast Mass Segmentation and Classification

  • Conference paper
  • First Online:
Data Engineering in Medical Imaging (DEMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14314))

Included in the following conference series:

  • 458 Accesses

Abstract

We investigate the usefulness of formula-driven supervised learning (FDSL) for breast ultrasound (US) image analysis. Medical data are usually too scarce to develop a better performing deep learning model from scratch. Transfer learning with networks pre-trained on ImageNet is commonly applied to address this problem. FDSL techniques have been recently investigated as an alternative solution to ImageNet based approaches. In the FDSL setting, networks for transfer learning applications are developed using large amounts of synthetic images generated with mathematical formulas, possibly taking into account the characteristics of the target data. In this work, we use Field II to develop a large synthetic dataset of 100 000 US images presenting different contour objects, as shape features play an important role in breast mass characterization in US. Synthetic data are utilized to pre-train the ResNet50 classification model and various variants of the U-Net segmentation network. Next, the pre-trained models are fine-tuned on breast mass US images. Our results demonstrate that the proposed FDSL approach can provide good performance with respect to breast mass classification and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020). https://doi.org/10.1016/j.dib.2019.104863

  3. Antropova, N., Huynh, B.Q., Giger, M.L.: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med. Phys. 44(10), 5162–5171 (2017)

    Article  Google Scholar 

  4. Baccouche, A., Garcia-Zapirain, B., Elmaghraby, A.S.: An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks. Sci. Rep. 12(1), 1–17 (2022)

    Article  Google Scholar 

  5. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  6. Byra, M.: Breast mass classification with transfer learning based on scaling of deep representations. Biomed. Signal Process. Control 69, 102828 (2021)

    Article  Google Scholar 

  7. Byra, M., et al.: Breast mass segmentation in ultrasound with selective kernel u-net convolutional neural network. Biomed. Signal Process. Control 61, 102027 (2020)

    Article  Google Scholar 

  8. Byra, M., Klimonda, Z., Kruglenko, E., Gambin, B.: Unsupervised deep learning based approach to temperature monitoring in focused ultrasound treatment. Ultrasonics 122, 106689 (2022)

    Article  Google Scholar 

  9. Chen, X., Lowerison, M.R., Dong, Z., Han, A., Song, P.: Deep learning-based microbubble localization for ultrasound localization microscopy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(4), 1312–1325 (2022)

    Article  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Flores, W.G., de Albuquerque Pereira, W.C., Infantosi, A.F.C.: Improving classification performance of breast lesions on ultrasonography. Pattern Recogn. 48(4), 1125–1136 (2015)

    Google Scholar 

  12. Han, S., et al.: A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys. Med. Biol. 62(19), 7714 (2017)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  14. Hyun, D., et al.: Deep learning for ultrasound image formation: CUBDL evaluation framework and open datasets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(12), 3466–3483 (2021)

    Article  Google Scholar 

  15. Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)

    Article  Google Scholar 

  16. Jush, F.K., Biele, M., Dueppenbecker, P.M., Maier, A.: Deep learning for ultrasound speed-of-sound reconstruction: Impacts of training data diversity on stability and robustness. arXiv preprint arXiv:2202.01208 (2022)

  17. Kataoka, H., et al.: Replacing labeled real-image datasets with auto-generated contours. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21232–21241 (2022)

    Google Scholar 

  18. Kataoka, H., et al.: Pre-training without natural images. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  19. Kim, M.-G., Oh, S.H., Kim, Y., Kwon, H., Bae, H.-M.: Learning-based attenuation quantification in abdominal ultrasound. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27 – October 1, 2021, Proceedings, Part VII, pp. 14–23. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_2

    Chapter  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Koike, T., Tomii, N., Watanabe, Y., Azuma, T., Takagi, S.: Deep learning for hetero-homo conversion in channel-domain for phase aberration correction in ultrasound imaging. Ultrasonics 129, 106890 (2023)

    Article  Google Scholar 

  22. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Shen, Y., et al.: Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat. Commun. 12(1), 5645 (2021)

    Article  Google Scholar 

  25. Simson, W.A., Paschali, M., Sideri-Lampretsa, V., Navab, N., Dahl, J.J.: Investigating pulse-echo sound speed estimation in breast ultrasound with deep learning. arXiv preprint arXiv:2302.03064 (2023)

  26. Treeby, B.E., Cox, B.T.: k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314–021314 (2010)

    Article  Google Scholar 

  27. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2018). https://doi.org/10.1109/JBHI.2017.2731873

Download references

Acknowledgments

The authors do not have any conflicts of interest. This work was supported by the National Science Center of Poland (2019/35/B/ST7/03792), program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development AMED (JP15dm0207001) and the Japan Society for the Promotion of Science (JSPS, Fellowship PE21032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Byra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Byra, M., Klimonda, Z., Litniewski, J. (2023). Pre-training with Simulated Ultrasound Images for Breast Mass Segmentation and Classification. In: Bhattarai, B., et al. Data Engineering in Medical Imaging. DEMI 2023. Lecture Notes in Computer Science, vol 14314. Springer, Cham. https://doi.org/10.1007/978-3-031-44992-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44992-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44991-8

  • Online ISBN: 978-3-031-44992-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics