Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decoupled Conditional Contrastive Learning with Variable Metadata for Prostate Lesion Detection

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14307))

Included in the following conference series:

  • 398 Accesses

Abstract

Early diagnosis of prostate cancer is crucial for efficient treatment. Multi-parametric Magnetic Resonance Images (mp-MRI) are widely used for lesion detection. The Prostate Imaging Reporting and Data System (PI-RADS) has standardized interpretation of prostate MRI by defining a score for lesion malignancy. PI-RADS data is readily available from radiology reports but is subject to high inter-reports variability. We propose a new contrastive loss function that leverages weak metadata with multiple annotators per sample and takes advantage of inter-reports variability by defining metadata confidence. By combining metadata of varying confidence with unannotated data into a single conditional contrastive loss function, we report a 3% AUC increase on lesion detection on the public PI-CAI challenge dataset.

Code is available at: https://github.com/camilleruppli/decoupled_ccl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The maximum number of metadata available for an exam is \(n=7\), the minimal achievable confidence value is thus \(c = 2(4/7 -1/2) > 0.14\). We fix \(\epsilon \) so that the confidence for \(n=1\) is higher than 0 but less that the minimal confidence when n is odd.

  2. 2.

    The 100 validation cases on the PI-CAI challenge website being hidden we could not compare our methods to the leaderboard performances.

References

  1. Alonso, I., Sabater, A., Ferstl, D., Montesano, L., Murillo, A.C.: Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank. In: ICCV, pp. 8199–8208 (2021)

    Google Scholar 

  2. Basak, H., Yin, Z.: Pseudo-label guided contrastive learning for semi-supervised medical image segmentation. In: CVPR (2023)

    Google Scholar 

  3. Bhattacharya, I., Seetharaman, A., et al.: Selective identification and localization of indolent and aggressive prostate cancers via CorrSigNIA: an MRI-pathology correlation and deep learning framework. Med. Image Anal. 75, 102288 (2021)

    Article  Google Scholar 

  4. Bosma, J.S., Saha, A., et al.: Annotation-efficient cancer detection with report-guided lesion annotation for deep learning-based prostate cancer detection in bpMRI. arxiv:2112.05151 (2021)

  5. Bovsnjak, M., Richemond, P.H., et al.: SemPPL: predicting pseudo-labels for better contrastive representations. In: ICLR (2023)

    Google Scholar 

  6. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Med. Image Anal. 87, 102792 (2021)

    Article  Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, vol. 119, pp. 1597–1607 (2020)

    Google Scholar 

  8. Dufumier, B., Barbano, C.A., Louiset, R., Duchesnay, E., Gori, P.: Integrating prior knowledge in contrastive learning with kernel. In: International Conference on Machine Learning (ICML) (2023)

    Google Scholar 

  9. Dufumier, B., Gori, P., et al.: Conditional alignment and uniformity for contrastive learning with continuous proxy labels. In: MedNeurIPS (2021)

    Google Scholar 

  10. Dufumier, B., et al.: Contrastive learning with continuous proxy meta-data for 3D MRI classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 58–68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_6

    Chapter  Google Scholar 

  11. Dwibedi, D., Aytar, Y., et al.: With a little help from my friends: nearest-neighbor contrastive learning of visual representations. In: ICCV, pp. 9568–9577 (2021)

    Google Scholar 

  12. Epstein, J.I., Egevad, L., Amin, M.B., Delahunt, B., Srigley, J.R., Humphrey, P.A.: The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2015)

    Article  Google Scholar 

  13. Fernandez-Quilez, A., Eftestøl, T., Kjosavik, S.R., Olsen, M.G., Oppedal, K.: Contrasting axial T2W MRI for prostate cancer triage: a self-supervised learning approach. In: ISBI, pp. 1–5 (2022)

    Google Scholar 

  14. Greer, M.D., et al.: Interreader variability of prostate imaging reporting and data system version 2 in detecting and assessing prostate cancer lesions at prostate MRI. In: AJR, pp. 1–8 (2019)

    Google Scholar 

  15. Grill, J.B., Strub, F., et al.: Bootstrap your own latent: a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735 (2019)

    Google Scholar 

  17. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2020)

    Article  Google Scholar 

  18. Khosla, P., Teterwak, P., et al.: Supervised contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  19. Li, S., Xia, X., Ge, S., Liu, T.: Selective-supervised contrastive learning with noisy labels. In: CVPR, pp. 316–325 (2022)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Rouvière, O., et al.: Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20(1), 100–109 (2019)

    Article  Google Scholar 

  22. Saha, A., Hosseinzadeh, M., Huisman, H.J.: End-to-end prostate cancer detection in bpMRI via 3D CNNs: effect of attention mechanisms, clinical priori and decoupled false positive reduction. Med. Image Anal. 73, 102155 (2021)

    Article  Google Scholar 

  23. Saha, A., Twilt, J.J., et al.: Artificial intelligence and radiologists at prostate cancer detection in MRI: the PI-CAI challenge (2022)

    Google Scholar 

  24. Saha, A., Twilt, J.J., et al.: The PI-CAI challenge: public training and development dataset (2022)

    Google Scholar 

  25. Smith, C.P., et al.: Intra- and interreader reproducibility of PI-RADSv2: a multireader study. J. Magn. Reson. Imaging 49, 1694–1703 (2019)

    Article  Google Scholar 

  26. Tsai, Y.H.H., Li, T., et al.: Conditional contrastive learning with kernel. In: ICLR (2022)

    Google Scholar 

  27. Turkbey, B.I., et al.: Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76, 340–351 (2019)

    Article  Google Scholar 

  28. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML, vol. 119, pp. 9929–9939 (2020)

    Google Scholar 

  29. Westphalen, A.C., et al.: Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology, 190646 (2020)

    Google Scholar 

  30. Xue, Y., Whitecross, K., Mirzasoleiman, B.: Investigating why contrastive learning benefits robustness against label noise. In: ICML, pp. 24851–24871 (2022)

    Google Scholar 

  31. Yeh, C., Hong, C., et al.: Decoupled contrastive learning. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 668–684. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19809-0_38

    Chapter  Google Scholar 

  32. Yi, L., Liu, S., She, Q., McLeod, A., Wang, B.: On learning contrastive representations for learning with noisy labels. In: CVPR, pp. 16661–16670 (2022)

    Google Scholar 

  33. Yu, X., et al.: Deep attentive panoptic model for prostate cancer detection using biparametric MRI scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 594–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_58

    Chapter  Google Scholar 

  34. Yu, X., Lou, B., et al.: False positive reduction using multiscale contextual features for prostate cancer detection in multi-parametric MRI scans. In: IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1355–1359 (2020)

    Google Scholar 

  35. Zhao, X., et al.: Contrastive learning for label efficient semantic segmentation. In: ICCV, pp. 10603–10613 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Ruppli .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 356 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruppli, C., Gori, P., Ardon, R., Bloch, I. (2023). Decoupled Conditional Contrastive Learning with Variable Metadata for Prostate Lesion Detection. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics