Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14286))

Included in the following conference series:

Abstract

The graph colouring problem consists of assigning labels, or colours, to the vertices of a graph such that no two adjacent vertices share the same colour. In this work we investigate whether deep reinforcement learning can be used to discover a competitive construction heuristic for graph colouring. Our proposed approach, ReLCol, uses deep Q-learning together with a graph neural network for feature extraction, and employs a novel way of parameterising the graph that results in improved performance. Using standard benchmark graphs with varied topologies, we empirically evaluate the benefits and limitations of the heuristic learned by ReLCol relative to existing construction algorithms, and demonstrate that reinforcement learning is a promising direction for further research on the graph colouring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/gpdwatkins/graph_colouring_with_RL.

  2. 2.

    https://mat.tepper.cmu.edu/COLOR02/.

References

  1. Ahmed, S.: Applications of graph coloring in modern computer science. Int. J. Comput. Inf. Technol. 3(2), 1–7 (2012)

    Google Scholar 

  2. Aragon, C.R., Johnson, D., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, T., Clements, W., Foerster, J., Lvovsky, A.: Exploratory combinatorial optimization with reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3243–3250 (2020)

    Google Scholar 

  5. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261 (2018)

  6. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’Horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1_52

    Chapter  Google Scholar 

  8. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2015)

    Article  Google Scholar 

  9. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood aggregation for graph nets. In: Advances in Neural Information Processing Systems, vol. 33, pp. 13260–13271 (2020)

    Google Scholar 

  11. Erdős, P., Rényi, A.: On random graphs I. Publicationes Math. 6(1), 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Formanowicz, P., Tanaś, K.: A survey of graph coloring - its types, methods and applications. Found. Comput. Decis. Sci. 37(3), 223–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fricke, G., et al.: Combinatorial problems on chessboards: a brief survey. In: Quadrennial International Conference on the Theory and Applications of Graphs, vol. 1, pp. 507–528 (1995)

    Google Scholar 

  14. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. Freeman, San Francisco (1979)

    Google Scholar 

  16. Gianinazzi, L., Fries, M., Dryden, N., Ben-Nun, T., Besta, M., Hoefler, T.: Learning combinatorial node labeling algorithms. arXiv preprint arXiv:2106.03594 (2021)

  17. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, J., Patwary, M., Diamos, G.: Coloring big graphs with alphagozero. arXiv preprint arXiv:1902.10162 (2019)

  19. Ireland, D., Montana, G.: Lense: Learning to navigate subgraph embeddings for large-scale combinatorial optimisation. In: International Conference on Machine Learning (2022)

    Google Scholar 

  20. Janczewski, R., Kubale, M., Manuszewski, K., Piwakowski, K.: The smallest hard-to-color graph for algorithm DSATUR. Discret. Math. 236(1–3), 151–165 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Korte, B., Vygen, J.: Combinatorial Optimization. AC, vol. 21. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56039-6

    Book  MATH  Google Scholar 

  23. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 84(6), 489–506 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lemos, H., Prates, M., Avelar, P., Lamb, L.: Graph colouring meets deep learning: effective graph neural network models for combinatorial problems. In: International Conference on Tools with Artificial Intelligence, pp. 879–885. IEEE (2019)

    Google Scholar 

  25. Lewis, R.M.R.: Guide to Graph Colouring. TCS, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81054-2

    Book  MATH  Google Scholar 

  26. de Lima, A.M., Carmo, R.: Exact algorithms for the graph coloring problem. Revista de Informática Teórica e Aplicada 25(4), 57–73 (2018)

    Article  Google Scholar 

  27. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM (JACM) 41(5), 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for combinatorial optimization: a survey. Comput. Oper. Res. 134, 105400 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)

  31. Moalic, L., Gondran, A.: Variations on memetic algorithms for graph coloring problems. J. Heuristics 24(1), 1–24 (2018)

    Article  Google Scholar 

  32. Sager, T.J., Lin, S.J.: A pruning procedure for exact graph coloring. ORSA J. Comput. 3(3), 226–230 (1991)

    Article  MATH  Google Scholar 

  33. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  34. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  35. Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Spinrad, J.P., Vijayan, G.: Worst case analysis of a graph coloring algorithm. Discret. Appl. Math. 12(1), 89–92 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  38. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    Article  MATH  Google Scholar 

  39. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  40. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    Article  MATH  Google Scholar 

  41. Zhou, Y., Hao, J.K., Duval, B.: Reinforcement learning based local search for grouping problems: a case study on graph coloring. Expert Syst. Appl. 64, 412–422 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

G. Watkins acknowledges support from EPSRC under grant EP/L015374/1.

G. Montana acknowledges support from EPSRC under grant EP/V024868/1.

We thank L. Gianinazzi for sharing the code for the method presented in [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Watkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watkins, G., Montana, G., Branke, J. (2023). Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics