Abstract
Sequential decision making in the real world often requires finding a good balance of conflicting objectives. In general, there exist a plethora of Pareto-optimal policies that embody different patterns of compromises between objectives, and it is technically challenging to obtain them exhaustively using deep neural networks. In this work, we propose a novel multi-objective reinforcement learning (MORL) algorithm that trains a single neural network via policy gradient to approximately obtain the entire Pareto set in a single run of training, without relying on linear scalarization of objectives. The proposed method works in both continuous and discrete action spaces with no design change of the policy network. Numerical experiments demonstrate the practicality and efficacy of our approach in comparison to standard MORL baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abels, A., Roijers, D.M., Lenaerts, T., Nowé, A., Steckelmacher, D.: Dynamic weights in multi-objective deep reinforcement learning. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, pp. 9–15 June 2019, California, USA (2019)
Basaklar, T., Gumussoy, S., Ogras, Ü.Y.: PD-MORL: preference-driven multi-objective reinforcement learning algorithm. CoRR abs/2208.07914 (2022)
Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)
Bouchacourt, D., Mudigonda, P.K., Nowozin, S.: DISCO Nets : dissimilarity coefficients networks. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Annual Conference on Neural Information Processing Systems 2016, December 5–10, 2016, Barcelona, Spain (2016)
Castelletti, A., Pianosi, F., Restelli, M.: A multiobjective reinforcement learning approach to water resourcessystems operation: pareto frontier approximation in a single run. Water Resour. Res. 49, 3476–3486 (2013)
Castelletti, A., Pianosi, F., Restelli, M.: Tree-based fitted q-iteration for multi-objective markov decision problems. In: Editors (ed.) The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, June 10–15, 2012. pp. 1–8. IEEE (2012)
Chen, X., Ghadirzadeh, A., Björkman, M., Jensfelt, P.: Meta-learning for multi-objective reinforcement learning. In: Editors (ed.) 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 977–983 (2019)
Dabney, W., Ostrovski, G., Silver, D., Munos, R.: Implicit quantile networks for distributional reinforcement learning. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, July 10–15, 2018 (2018)
Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997)
Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: diversity is all you need: learning skills without a reward function. In: Editors (ed.) 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019. OpenReview.net (2019)
Hayes, C.F., et al.: A practical guide to multi-objective reinforcement learning and planning. Auton. Agents Multi Agent Syst. 36(1), 26 (2022)
Kanazawa, T.: (2023), www.github.com/TaTKSM/LCMOPG
Kanazawa, T., Gupta, C.: Sample-based uncertainty quantification with a single deterministic neural network. In: Bäck, T., van Stein, B., Wagner, C., Garibaldi, J.M., Lam, H.K., Cottrell, M., Doctor, F., Filipe, J., Warwick, K., Kacprzyk, J. (eds.) Proceedings of the 14th International Joint Conference on Computational Intelligence, IJCCI 2022, Valletta, Malta, October 24–26, 2022. pp. 292–304. SCITEPRESS (2022)
Kanazawa, T., Gupta, C.: Latent-conditioned policy gradient for multi-objective deep reinforcement learning. CoRR abs/2303.08909 (2023)
Liu, C., Xu, X., Hu, D.: Multiobjective reinforcement learning: a comprehensive overview. IEEE Trans. Syst. Man Cybern. Syst. 45(3), 385–398 (2015)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Moffaert, K.V., Nowé, A.: Multi-objective reinforcement learning using sets of pareto dominating policies. J. Mach. Learn. Res. 15(1), 3483–3512 (2014)
Mossalam, H., Assael, Y.M., Roijers, D.M., Whiteson, S.: Multi-objective deep reinforcement learning. In: NIPS 2016 Workshop on Deep Reinforcement Learning, CoRR abs/1610.02707 (2016)
Parisi, S., Pirotta, M., Peters, J.: Manifold-based multi-objective policy search with sample reuse. Neurocomputing 263, 3–14 (2017)
Parisi, S., Pirotta, M., Restelli, M.: Multi-objective Reinforcement Learning through continuous pareto manifold approximation. J. Artif. Intell. Res. 57, 187–227 (2016)
Parisi, S., Pirotta, M., Smacchia, N., Bascetta, L., Restelli, M.: Policy gradient approaches for multi-objective sequential decision making. In: Editors (ed.) 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July 6–11, 2014. pp. 2323–2330. IEEE (2014)
Pirotta, M., Parisi, S., Restelli, M.: Multi-Objective Reinforcement Learning with Continuous Pareto Frontier Approximation. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, 2015, Austin, Texas, USA. pp. 2928–2934. AAAI Press (2015)
Reymond, M.: (2022), www.github.com/mathieu-reymond/pareto-conditioned-networks/tree/main/envs/minecart
Reymond, M., Bargiacchi, E., Nowé, A.: Pareto Conditioned Networks. In: Faliszewski, P., Mascardi, V., Pelachaud, C., Taylor, M.E. (eds.) 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, May 9–13, 2022. pp. 1110–1118 (2022)
Reymond, M., Nowe, A.: Pareto-DQN: approximating the Pareto front in complex multi-objective decision problems. In: Editors (ed.) Proceedings of the Adaptive and Learning Agents Workshop 2019 (ALA-19) at AAMAS (2019)
Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-making. J. Artif. Intell. Res. 48, 67–113 (2013)
Schmidhuber, J.: Reinforcement learning upside down: don’t predict rewards - just map them to actions. CoRR abs/1912.02875 (2019)
Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press, second edn. (2018)
Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E.: Empirical evaluation methods for multiobjective reinforcement learning algorithms. Mach. Learn. 84(1–2), 51–80 (2011)
Vamplew, P., Yearwood, J., Dazeley, R., Berry, A.: On the Limitations of Scalarisation for Multi-objective Reinforcement Learning of Pareto Fronts. In: Wobcke, W., Zhang, M. (eds.) AI 2008: Advances in Artificial Intelligence, pp. 372–378. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008)
Van Moffaert, K., Drugan, M.M., Nowé, A.: Scalarized multi-objective reinforcement learning: Novel design techniques. In: Editors (ed.) 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). pp. 191–199 (2013)
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)
Xu, J., Tian, Y., Ma, P., Rus, D., Sueda, S., Matusik, W.: Prediction-guided multi-objective reinforcement learning for continuous robot control. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, pp. 13–18 July 2020 (2020)
Yang, R.: (2019), www.github.com/RunzheYang/MORL/blob/master/synthetic/envs/fruit_tree.py
Yang, R., Sun, X., Narasimhan, K.: A Generalized algorithm for multi-objective reinforcement learning and policy adaptation. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada (2019)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kanazawa, T., Gupta, C. (2023). Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14259. Springer, Cham. https://doi.org/10.1007/978-3-031-44223-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-44223-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44222-3
Online ISBN: 978-3-031-44223-0
eBook Packages: Computer ScienceComputer Science (R0)