Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Generalization of Multi-agent Reinforcement Learning Through Domain-Invariant Feature Extraction

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14259))

Included in the following conference series:

  • 1162 Accesses

Abstract

The limited generalization ability of reinforcement learning constrains its potential applications, particularly in complex scenarios such as multi-agent systems. To overcome this limitation and enhance the generalization capability of MARL algorithms, this paper proposes a three-stage method that integrates domain randomization and domain adaptation to extract effective features for policy learning. Specifically, the first stage samples environments provided for training and testing in the following stages using domain randomization. The second stage pretrains a domain-invariant feature extractor (DIFE) which employs cycle consistency to disentangle domain-invariant and domain-specific features. The third stage utilizes DIFE for policy learning. Experimental results in MPE tasks demonstrate that our approach yields better performance and generalization ability. Meanwhile, the features captured by DIFE are more interpretable for subsequent policy learning in visualization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Dumitru Erhan, D.: Domain Separation Networks. In: Proceedings of NeurIPS, pp. 343–351. Curran Associates Inc (2016). ISBN 978-1-5108-3881-9

    Google Scholar 

  2. Chen, X., Hu, J., Jin, C., Li, L., Wang, L.: Understanding domain randomization for sim-to-real transfer. In: ICLR (2022)

    Google Scholar 

  3. Hassabis, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144 (2018). ISSN 0036–8075. https://doi.org/10.1126/science.aar6404. Publisher: American Association for the Advancement of Science

  4. Ganin, Y., et al.: Domain-Adversarial Training of Neural Networks. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_10

  5. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  6. Ghosh, D., Rahme, J., Kumar, A., Zhang, A., Adams, R.P., Levine, S.: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability. In: M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors, Advances in NeurIPS, vol. 34, pp. 25502–25515. Curran Associates Inc (2021)

    Google Scholar 

  7. Hoffman, J., Tzeng, E., Darrell, T., Saenko, K.: Simultaneous Deep Transfer Across Domains and Tasks. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_9

  8. Jha, A.H., Anand, S., Singh, M., Veeravasarapu, V.S.R.: Disentangling Factors of Variation with Cycle-Consistent Variational Auto-encoders. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 829–845. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_49

    Chapter  Google Scholar 

  9. Kwon, J., Efroni, Y., Caramanis, C., Mannor, S.: RL for Latent MDPs: Regret Guarantees and a Lower Bound. In: M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, eds, Advances in NeurIPS, vol. 34, pp. 24523–24534. Curran Associates Inc (2021)

    Google Scholar 

  10. Liu, A.H., et al.: A unified feature disentangler for multi-domain image translation and manipulation. In: Proceedings of NeurIPS, pp. 2595–2604 (2018). https://papers.nips.cc/paper/7525-a-unified-feature-disentangler-for-multi-domain-image-translation-and-manipulation

  11. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of ICML, ICML’15, pp. 97–105. JMLR.org (2015)

    Google Scholar 

  12. Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., Savarese, S.: Adversarially robust policy learning: active construction of physically-plausible perturbations. In: Proceedings of IROS, pp. 3932–3939 (2017). https://doi.org/10.1109/IROS.2017.8206245. ISSN: 2153-0866

  13. OpenAI, Christopher Berner, C., et al.: Dota 2 with large scale deep reinforcement learning. arXiv:1912.06680 (2019)

  14. OpenAI, Akkaya, I., et al.: Solving Rubik’s Cube with a Robot Hand. arXiv:1910.07113 (2019)

  15. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: Proceedings of ICRA, pp. 3803–3810 (2018). https://doi.org/10.1109/ICRA.2018.8460528. arXiv:1710.06537

  16. Reed, S., et al.: A Generalist Agent. arXiv:2205.06175 (2022)

  17. Sadeghi F., Levine, S.: CAD2RL: real single-image flight without a single real image. arxiv.org/abs/1611.04201arXiv:1611.04201 (2017)

  18. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). ISSN 1476–4687. https://doi.org/10.1038/nature16961. Number: 7587 Publisher: Nature Publishing Group

  19. Sun, B., Saenko, K.: Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  20. Adaptive Agent Team, et al.: Human-timescale adaptation in an open-ended task space. arXiv:2301.07608 (2023)

  21. Tobin, J., et al.: Domain randomization for transferring deep neural networks from simulation to the real world, arXiv:1703.06907 (2017)

  22. Tzeng, E., J., H., Zhang, N., Saenko, K., Trevor Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv:1412.3474 (2014)

  23. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of CVPR, pp. 2962–2971 (2017). https://doi.org/10.1109/CVPR.2017.316. ISSN: 1063–6919

  24. Vinyals, O, et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350–354 (2019). ISSN 1476–4687. https://doi.org/10.1038/s41586-019-1724-z. Number: 7782 Publisher: Nature Publishing Group

  25. Xing, J., Nagata, T., Chen, K., Zou, X., Neftci, E., Krichmar, J.L.: Domain adaptation in reinforcement learning via latent unified state representation. In: Proceedings of AAAI, vol. 35, pp. 10452–10459 (2021). https://doi.org/10.1609/aaai.v35i12.17251

  26. Xing, Y., Song, O., Cheng, G.: On the algorithmic stability of adversarial training. In: M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors, Advances in NeurIPS, vol. 34, pp. 26523–26535. Curran Associates Inc (2021)

    Google Scholar 

  27. Yifan Xu, Y., et al.: A double-observation policy learning framework for multi-target coverage with connectivity maintenance. In: Ren, Z., Wang, M., Hua, Y., eds, Proceedings of CCSICC, pp. 1279–1290. Springer Nature Singapore (2023). https://doi.org/10.1007/978-981-19-3998-3_120

Download references

Acknowledgements

This work was supported by the Beijing Nova Program under Grant 20220484077, the National Natural Science Foundation of China under Grant 62073323, the External cooperation key project of Chinese Academy Sciences No. 173211KYSB20200002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Pu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Pu, Z., Cai, Q., Li, F., Chai, X. (2023). Improving Generalization of Multi-agent Reinforcement Learning Through Domain-Invariant Feature Extraction. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14259. Springer, Cham. https://doi.org/10.1007/978-3-031-44223-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44223-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44222-3

  • Online ISBN: 978-3-031-44223-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics