Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lightweight Human Pose Estimation Based on Densely Guided Self-Knowledge Distillation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14255))

Included in the following conference series:

Abstract

The current human pose estimation network has difficulty to be deployed on lightweight devices due to its large number of parameters. An effective solution is knowledge distillation, but there still exists the problem of insufficient learning ability of the student network: (1) There is an error avalanche problem in multi-teacher distillation. (2) There exists noise in heatmaps generated by teachers, which causes model degradation. (3) The effect of self-knowledge distillation is ignored. (4) Pose estimation is considered to be a regression problem but people usually ignore that it is also a classification problem. To address the above problems, we propose a densely guided self-knowledge distillation framework named DSKD to solve the error avalanche problem, propose a binarization operation to reduce the noise of the teacher’s heatmaps, and add a classification loss to the total loss to guide student’s learning. Experimental results show that our method effectively improves the performance of different lightweight models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: CVPR (2019)

    Google Scholar 

  2. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)

    Google Scholar 

  3. Belagiannis, V., Zisserman, A.: Recurrent human pose estimation. In: FG. IEEE (2017)

    Google Scholar 

  4. Bulat, A., Tzimiropoulos, G.: Binarized convolutional landmark localizers for human pose estimation and face alignment with limited resources. In: ICCV (2017)

    Google Scholar 

  5. Chen, D., Mei, J.P., Wang, C., Feng, Y., Chen, C.: Online knowledge distillation with diverse peers. In: AAAI (2020)

    Google Scholar 

  6. Chen, X., Yang, G.: Multi-person pose estimation with limb detection heatmaps. In: ICIP (2018)

    Google Scholar 

  7. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: CVPR (2018)

    Google Scholar 

  8. Cho, S., Maqbool, M., Liu, F., Foroosh, H.: Self-attention network for skeleton-based human action recognition. In: WACV (2020)

    Google Scholar 

  9. Dai, X., et al.: General instance distillation for object detection. In: CVPR (2021)

    Google Scholar 

  10. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: Rmpe: regional multi-person pose estimation. In: ICCV (2017)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

    Google Scholar 

  12. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  13. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  14. Li, Y., Wang, C., Cao, Y., Liu, B., Tan, J., Luo, Y.: Human pose estimation based in-home lower body rehabilitation system. In: IJCNN (2020)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  16. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: AAAI (2020)

    Google Scholar 

  17. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: ECCV (2016)

    Google Scholar 

  18. Osokin, D.: Real-time 2d multi-person pose estimation on cpu: lightweight openpose. arXiv preprint arXiv:1811.12004 (2018)

  19. Rafi, U., Leibe, B., Gall, J., Kostrikov, I.: An efficient convolutional network for human pose estimation. In: BMVC (2016)

    Google Scholar 

  20. Son, W., Na, J., Choi, J., Hwang, W.: Densely guided knowledge distillation using multiple teacher assistants. In: ICCV (2021)

    Google Scholar 

  21. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  22. Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural networks. In: CVPR (2014)

    Google Scholar 

  23. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: ECCV (2018)

    Google Scholar 

  24. Xu, K., Rui, L., Li, Y., Gu, L.: Feature normalized knowledge distillation for image classification. In: ECCV (2020)

    Google Scholar 

  25. Xu, T., Takano, W.: Graph stacked hourglass networks for 3d human pose estimation. In: CVPR (2021)

    Google Scholar 

  26. Yu, C., et al.: Lite-hrnet: a lightweight high-resolution network. In: CVPR (2021)

    Google Scholar 

  27. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization. In: CVPR (2020)

    Google Scholar 

  28. Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C.: Distribution-aware coordinate representation for human pose estimation. In: CVPR (2020)

    Google Scholar 

  29. Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: CVPR (2019)

    Google Scholar 

  30. Zhang, Z., Tang, J., Wu, G.: Lightweight human pose estimation under resource-limited scenes. In: ICASSP (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61976079, in part by Guangxi Key Research and Development Program under Grant 2021AB20147, and in part by Anhui Key Research and Development Program under Grant 202004a05020039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Qiu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Zhao, ZQ., Li, J., Tian, W. (2023). Lightweight Human Pose Estimation Based on Densely Guided Self-Knowledge Distillation. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14255. Springer, Cham. https://doi.org/10.1007/978-3-031-44210-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44210-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44209-4

  • Online ISBN: 978-3-031-44210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics