Abstract
Video Instance Segmentation (VIS) aims to detect, segment, and track instances appearing in a video. To reduce annotation costs, some existing VIS methods use the Weakly Supervised Scheme (WSVIS). However, those WSVIS methods usually run in an offline manner, which fails in handling ongoing and long videos due to the limited computational resources. It would be considerable benefits if online models could match or surpass the performance of offline models. In this paper, we propose OWS-Seg, an end-to-end, simple, and efficient online WSVIS network with box annotations. Concretely, OWS-Seg consists of two novel contrastive learning branches: the Instance Contrastive Learning (ICL) branch learns instance level discriminative features to distinguish different instances in each frame, and the Mask Contrastive Learning (MCL) branch with Boxccam learns pixel level discriminative features to differentiate foreground and background. Experimental results show that OWS-Seg achieves promising performance, e.g., 43.5% AP on YouTube-VIS 2019, 36.6% AP on YouTube-VIS 2021, and 21.9% AP on OVIS. Besides, OWS-Seg achieves comparable performance to offline WSVIS and surpasses recent fully supervised methods, demonstrating its wide range of practical applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: SipMask: spatial information preservation for fast image and video instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_1
Fu, Y., Liu, S., Iqbal, U., De Mello, S., Shi, H., Kautz, J.: Learning to track instances without video annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8680–8689 (2021)
Ge, Z., Liu, S., Li, Z., Yoshie, O., Sun, J.: OTA: optimal transport assignment for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 303–312 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Heo, M., Hwang, S., Oh, S.W., Lee, J.Y., Kim, S.J.: VITA: video instance segmentation via object token association. In: Advances in Neural Information Processing Systems (2022)
Hwang, S., Heo, M., Oh, S.W., Kim, S.J.: Video instance segmentation using inter-frame communication transformers. Adv. Neural. Inf. Process. Syst. 34, 13352–13363 (2021)
Ke, L., Danelljan, M., Ding, H., Tai, Y.W., Tang, C.K., Yu, F.: Mask-free video instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
Lee, J., Yi, J., Shin, C., Yoon, S.: BBAM: bounding box attribution map for weakly supervised semantic and instance segmentation. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 2643–2652 (2021)
Li, F., Shen, L., Mi, Y., Li, Z.: DRCNet: dynamic image restoration contrastive network. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13679. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_30
Li, F., Zhang, L., Lei, J., Liu, Z., Li, Z.: Multi-frequency representation enhancement with privilege information for video super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)
Li, X., Wang, J., Li, X., Lu, Y.: Hybrid instance-aware temporal fusion for online video instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1429–1437 (2022)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, Q., Ramanathan, V., Mahajan, D., Yuille, A., Yang, Z.: Weakly supervised instance segmentation for videos with temporal mask consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13968–13978 (2021)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Qi, J., et al.: Occluded video instance segmentation: a benchmark. In: IJCV (2022)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)
Tian, Z., Shen, C., Wang, X., Chen, H.: BoxInst: high-performance instance segmentation with box annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5443–5452 (2021)
Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8741–8750 (2021)
Wu, J., Yarram, S., Liang, H., Lan, T., Medioni, G.: Efficient video instance segmentation via tracklet query and proposal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 959–968 (2022)
Wu, J., Jiang, Y., Bai, S., Zhang, W., Bai, X.: SeqFormer: sequential transformer for video instance segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13688. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_32
Wu, J., Liu, Q., Jiang, Y., Bai, S., Yuille, A., Bai, X.: In defense of online models for video instance segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13688. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_34
Xie, J., Xiang, J., Chen, J., Hou, X., Zhao, X., Shen, L.: C2AM: contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 989–998 (2022)
Xu, N., et al.: Youtubevis dataset 2021 version (2022)
Yan, L., Wang, Q., Ma, S., Wang, J., Yu, C.: Solve the puzzle of instance segmentation in videos: a weakly supervised framework with spatio-temporal collaboration. IEEE Trans. Circuits Syst. Video Technol. 32, 393–406 (2022)
Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5188–5197 (2019)
Yang, S., et al.: Crossover learning for fast online video instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8043–8052 (2021)
Yang, S., et al.: Temporally efficient vision transformer for video instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2885–2895 (2022)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2020)
Acknowledgements
The authors gratefully acknowledge the financial support from the National Key R &D Program of China (No.2021ZD0113805, No.2020YFD0900204), and the Key Research and Development Plan Project of Guangdong Province(No.2020B0202010009). We appreciate the seminar participants’ comments at the Center for Deep Learning of Computer Vision Research at China Agricultural University, making the manuscript improve significantly.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ning, Y., Li, F., Dong, M., Li, Z. (2023). OWS-Seg: Online Weakly Supervised Video Instance Segmentation via Contrastive Learning. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14260. Springer, Cham. https://doi.org/10.1007/978-3-031-44195-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-44195-0_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44194-3
Online ISBN: 978-3-031-44195-0
eBook Packages: Computer ScienceComputer Science (R0)