Nothing Special   »   [go: up one dir, main page]

Skip to main content

Understanding Unsupervised Learning Explanations Using Contextual Importance and Utility

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1901))

Included in the following conference series:

Abstract

While the concept of Explainability has advanced significantly in the past decade, many areas remain unexplored. Although XAI implementations have historically been employed in attempting to ‘open’ the traditional black-box model of supervised learning implementation aiming to extract human-understandable information, there are no successful attempts at tackling unsupervised learning. This paper aims to tackle the challenge of using an XAI approach, specifically Contextual Importance and Utility (CIU), in order to provide an explainability layer for unsupervised learning models. The paper introduces the current XAI approaches of CIU as well as the other state-of-the-art implementations such as Lime or Shapley. The challenges posed by the unsupervised learning problem are explored and discussed, both on a conceptual and technical level. A relatively novel approach using a CIU implementation on unsupervised clustering techniques is presented along with the brief comparison with another state-of-the-art method called LIME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(u_{j}(y_{j})\) could have any shape as long as it produces values in the range [0, 1] but that case goes beyond the scope of the current paper (and theory).

References

  1. Crabbé, J., van der Schaar, M.: Label-free explainability for unsupervised models. arXiv preprint arXiv:2203.01928 (2022)

  2. Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones pour l’aide à la décision multicritère. Ph.D. thesis, INSA de Lyon (1996)

    Google Scholar 

  3. Främling, K.: Contextual importance and utility in R: the ‘CIU’ package. In: Proceedings of 1st Workshop on Explainable Agency in Artificial Intelligence, at 35h AAAI Conference on Artificial Intelligence, 2–9 February 2021, pp. 110–114 (2021)

    Google Scholar 

  4. Främling, K., Graillot, D.: Extracting explanations from neural networks. In: Proceedings of the ICANN, vol. 95, pp. 163–168. Citeseer (1995)

    Google Scholar 

  5. Främling, K.: Contextual importance and utility in R: the ‘CIU’ package (2021)

    Google Scholar 

  6. Kannan, S., Ramathilagam, S., Chung, P.: Effective fuzzy C-means clustering algorithms for data clustering problems. Expert Syst. Appl. 39(7), 6292–6300 (2012). https://doi.org/10.1016/j.eswa.2011.11.063

    Article  Google Scholar 

  7. Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., Müller, K.R.: From clustering to cluster explanations via neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  8. Knapič, S., Malhi, A., Saluja, R., Främling, K.: Explainable artificial intelligence for human decision support system in the medical domain. Mach. Learn. Knowl. Extract. 3(3), 740–770 (2021)

    Article  Google Scholar 

  9. Lin, C., Chen, H., Kim, C., Lee, S.I.: Contrastive corpus attribution for explaining representations. arXiv preprint arXiv:2210.00107 (2022)

  10. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  11. Makarychev, K., Shan, L.: Near-optimal algorithms for explainable k-medians and k-means. In: International Conference on Machine Learning, pp. 7358–7367. PMLR (2021)

    Google Scholar 

  12. Malhi, A., Madhikermi, M., Huotari, M., Främling, K.: Air handling unit explainability using contextual importance and utility. In: Hara, T., Yamaguchi, H. (eds.) MobiQuitous 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 419, pp. 513–519. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-94822-1_32

    Chapter  Google Scholar 

  13. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://arxiv.org/abs/1706.07269

  14. Moshkovitz, M., Dasgupta, S., Rashtchian, C., Frost, N.: Explainable k-means and k-medians clustering (2020). http://proceedings.mlr.press/v119/moshkovitz20a.html

  15. Scholbeck, C.A., Funk, H., Casalicchio, G.: Algorithm-agnostic interpretations for clustering. arXiv preprint arXiv:2209.10578 (2022)

  16. Unwin, A., Kleinman, K.: The iris data set: in search of the source of virginica. Significance 18, 26–29 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avleen Malhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malhi, A., Apopei, V., Främling, K. (2023). Understanding Unsupervised Learning Explanations Using Contextual Importance and Utility. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1901. Springer, Cham. https://doi.org/10.1007/978-3-031-44064-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44064-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44063-2

  • Online ISBN: 978-3-031-44064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics