Nothing Special   »   [go: up one dir, main page]

Skip to main content

Handling Symmetries in Mixed-Integer Semidefinite Programs

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

Symmetry handling is a key technique for reducing the running time of branch-and-bound methods for solving mixed-integer linear programs. In this paper, we generalize the notion of (permutation) symmetries to mixed-integer semidefinite programs (MISDPs). We first discuss how symmetries of MISDPs can be automatically detected by finding automorphisms of a suitably colored auxiliary graph. Then known symmetry handling techniques can be applied. We demonstrate the effect of symmetry handling on different types of MISDPs. To this end, our symmetry detection routine is implemented in the state-of-the-art MISDP solver SCIP-SDP. We obtain speed-ups similar to the mixed-integer linear case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., de Klerk, E., Pasechnik, D., Sotirov, R.: Exploiting group symmetry in truss topology optimization. Optim. Eng. 10(3), 331–349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. Technical report, Optimization Online (2021). http://www.optimization-online.org/DB_HTML/2021/12/8728.html

  3. Burer, S., Monteiro, R.D., Zhang, Y.: Maximum stable set formulations and heuristics based on continuous optimization. Math. Program. 94, 137–166 (2022). https://doi.org/10.1007/s10107-002-0356-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Color02 - computational symposium: graph coloring and its generalizations (2002). http://mat.gsia.cmu.edu/COLOR02

  5. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965). https://doi.org/10.1093/comjnl/8.3.250

    Article  MathSciNet  MATH  Google Scholar 

  6. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. 122(2), 225–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fiorini, S., Wilson, R.J.: Edge-colourings of graphs. No. 16 in Research Notes in Mathematics, Pitman Publishing Limited (1977)

    Google Scholar 

  8. Gally, T.: Computational Mixed-Integer Semidefinite Programming. Dissertation, TU Darmstadt (2019)

    Google Scholar 

  9. Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer semidefinite programs. Optim. Methods Softw. 33(3), 594–632 (2017). https://doi.org/10.1080/10556788.2017.1322081

    Article  MathSciNet  MATH  Google Scholar 

  10. Gamrath, G., et al.: The SCIP Optimization Suite 7.0. Technical report, Optimization Online (2020). http://www.optimization-online.org/DB_HTML/2020/03/7705.html

  11. Gatermann, K., Parrilo, P.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling. Math. Program. 175(1), 197–240 (2019). https://doi.org/10.1007/s10107-018-1239-7

  13. Hu, H., Sotirov, R., Wolkowicz, H.: Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs. Math. Program. (2022, to appear)

    Google Scholar 

  14. Isaacs, R.: Infinite families of nontrivial trivalent graphs which are not tait colorable. Am. Math. Mon. 82(3), 221–239 (1975). https://doi.org/10.1080/00029890.1975.11993805

  15. Junttila, T., Kaski, P.: Bliss: a tool for computing automorphism groups and canonical labelings of graphs. https://users.aalto.fi/tjunttil/bliss/

  16. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1–3), 3–21 (2003). https://doi.org/10.1007/s10107-003-0394-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_17

    Chapter  MATH  Google Scholar 

  19. Mars, S.: Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design. Dissertation, FAU Erlangen-Nürnberg (2013)

    Google Scholar 

  20. Matter, F., Pfetsch, M.E.: Presolving for mixed-integer semidefinite optimization. INFORMS J. Optim. (2022, to appear). https://doi.org/10.1287/ijoo.2022.0079

  21. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1), 147–178 (2011). https://doi.org/10.1007/s10107-009-0273-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for mixed integer programs. Math. Program. Comput. 11(1), 37–93 (2018). https://doi.org/10.1007/s12532-018-0140-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Pilanci, M., Wainwright, M.J., El Ghaoui, L.: Sparse learning via Boolean relaxations. Math. Program. 151(1), 63–87 (2015). https://doi.org/10.1007/s10107-015-0894-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Project website: instance data, supplementary material. https://www2.mathematik.tu-darmstadt.de/pfetsch/MISDP-symmetries.html

  26. Salvagnin, D.: A dominance procedure for integer programming. Master’s thesis, University of Padova, Padova, Italy (2005)

    Google Scholar 

  27. Wiese, S.: Symmetry detection in mixed-integer conic programming. Mosek Whitepaper (2022). https://docs.mosek.com/whitepapers/symmetry.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Hojny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hojny, C., Pfetsch, M.E. (2023). Handling Symmetries in Mixed-Integer Semidefinite Programs. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics