Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Enhancing Technologies and Anonymisation in Light of GDPR and Machine Learning

  • Conference paper
  • First Online:
Privacy and Identity Management (Privacy and Identity 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 671))

Included in the following conference series:

  • 440 Accesses

Abstract

The use of Privacy-Enhancing Technologies in the field of data anonymisation and pseudonymisation raises a lot of questions with respect to legal compliance under GDPR and current international data protection legislation. Here, especially the use of innovative technologies based on machine learning may increase or decrease risks to data protection. A workshop held at the IFIP Summer School on Privacy and Identity Management showed the complexity of this field and the need for further interdisciplinary research on the basis of an improved joint understanding of legal and technical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the GDPR defines the process of “pseudonymisation” with the outcome of “pseudonymised data” which is a subset of all kinds of “pseudonymous data” where the identity of the data subjects is hidden to some extent.

  2. 2.

    https://curia.europa.eu/juris/liste.jsf?num=C-311/18.

References

  1. Agencia Española de Protección de Datos and European Data Protection Supervisor. 10 misunderstandings related to anonymization (2021). https://edps.europa.eu/system/files/2021-04/21-04-27_aepd-edps_anonymisation_en_5.pdf

  2. European Data Protection Board. Guidelines 4/2019 on article 25. data protection by design and by default (2020). https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-42019-article-25-data-protection-design-and_en

  3. Bruegger, B.P.: Towards a better understanding of identification, pseudonymization, and anonymization (2021). https://uld-sh.de/PseudoAnon

  4. Bygrave, L.: Data protection by design and by default: deciphering the EU’s legislative requirements. Oslo Law Rev. 4(2), 105–120 (2017)

    Article  Google Scholar 

  5. Danezis, G., et al.: Privacy and Data Protection by Design - from policy to engineering. Technical report, ENISA (2014). ISBN 978-92-9204-108-3. https://doi.org/10.2824/38623. https://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/privacy-and-data-protection-by-design

  6. European Data Protection Board. Recommendations 01/2020 on measures that supplement transfer tools to ensure compliance with the EU level of protection of personal data (2020). https://edpb.europa.eu/system/files/2021-06/edpb_recommendations_202001vo.2.0_supplementarymeasurestransferstools_en.pdf

  7. Finck, M., Pallas, F.: They who must not be identified-distinguishing personal from non-personal data under the GDPR. Int. Data Privacy Law 10(1), 11–36 (2020). https://doi.org/10.1093/idpl/ipz026. ISSN 2044-3994

  8. Hoepman, J.-H.: Privacy design strategies. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 446–459. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-5_38

    Chapter  Google Scholar 

  9. Hoepman, J.-H.: Privacy design strategies. The little blue book (2018). https://www.cs.ru.nl/jhh/publications/pds-booklet.pdf

  10. Jasmontaite, L., Kamara, I., Zanfir-Fortuna, G., Leucci, S.: Data protection by design and by default: framing guiding principles into legal obligations in the GDPR. Eur. Data Prot. Law Rev. 4(2), 168–189 (2018)

    Article  Google Scholar 

  11. Karegar, F., Alaqra, A.S., Fischer-Hübner, S.: Exploring user-suitable metaphors for differentially private data analyses. In: Eighteenth Symposium on Usable Privacy and Security (SOUPS 2022), Boston, MA, pp. 175–193. USENIX Association (2022). https://www.usenix.org/conference/soups2022/presentation/karegar. ISBN 978-1-939133-30-4

  12. Nanayakkara, P., Bater, J., He, X., Hullman, J., Rogers, J.: Visualizing privacy-utility trade-offs in differentially private data releases. arXiv preprint arXiv:2201.05964 (2022)

  13. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management, vol. 34 (2010). http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

  14. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  15. Stalla-Bourdillon, S., Rossi, A.: Why a good additional technical safeguard is hard to find–a response to the consultation on the EDPB draft recommendations 01/2020 on measures that supplement transfer tools to ensure compliance with the EU level of protection of personal data (2020). https://edpb.europa.eu/sites/default/files/webform/public_consultation_reply/response_sto_edpb_recommendations.pdf

  16. Wu, J., Zappala, D.: When is a tree really a truck? Exploring mental models of encryption. In: Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), pp. 395–409 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiko Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer-Hübner, S., Hansen, M., Hoepman, JH., Jensen, M. (2023). Privacy-Enhancing Technologies and Anonymisation in Light of GDPR and Machine Learning. In: Bieker, F., Meyer, J., Pape, S., Schiering, I., Weich, A. (eds) Privacy and Identity Management. Privacy and Identity 2022. IFIP Advances in Information and Communication Technology, vol 671. Springer, Cham. https://doi.org/10.1007/978-3-031-31971-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31971-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31970-9

  • Online ISBN: 978-3-031-31971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics