Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling Large-Scale Joint Distributions and Inference by Randomized Assignment

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Abstract

We propose a novel way of approximating energy-based models by randomizing the parameters of assignment flows, a class of smooth dynamical data labeling systems. Our approach builds on averaging flow limit points within the combinatorially large simplex of joint distributions. In an initial learning stage, the distribution of flow parameters is selected to match a given energy-based model. This entails the difficult problem of estimating model entropy which we address by differentiable approximation of a bias-corrected estimator. The model subsequently allows to perform probabilistic inference by computationally efficient draws of structured integer samples which are approximately governed by the energy-based target Gibbs measure in the low-temperature regime. We conduct a rigorous quantitative assessment by approximating a small two-dimensional Ising model and find close approximation of the combinatorial solution in terms of relative entropy which outperforms a mean-field approximation baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All experiments were run on a single NVIDIA RTX 2080ti graphics card.

References

  1. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017). https://doi.org/10.1007/s10851-016-0702-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxter, R.: Exactly Solved Models in Statistical Mechanics. Academic Press (1982)

    Google Scholar 

  3. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  4. Boll, B., Schwarz, J., Schnörr, C.: On the correspondence between replicator dynamics and assignment flows. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) SSVM 2021. LNCS, vol. 12679, pp. 373–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75549-2_30

    Chapter  MATH  Google Scholar 

  5. Boll, B., Zeilmann, A., Petra, S., Schnörr, C.: Self-certifying classification by linearized deep assignment. preprint arXiv:2201.11162 (2022)

  6. Brèmaud, P.: Discrete Probability Models and Methods. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43476-6

    Book  MATH  Google Scholar 

  7. Catoni, O.: PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning. Institute of Mathematical Statistics (2007)

    Google Scholar 

  8. Dynkin, E.B.: Sufficient statistics and extreme points. Ann. Probab. 6(5), 705–730 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Gidas, B.: A renormalization group approach to image processing problems. IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 164–180 (1989)

    Article  MATH  Google Scholar 

  11. Heskes, T.: Convexity arguments for efficient minimization of the Bethe and Kikuchi free energies. J. Artif. Intell. Res. 26, 153–190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiao, J., Venkat, K., Han, Y., Weissman, T.: Minimax estimation of functionals of discrete distributions. IEEE Trans. Inf. Theory 61(5), 2835–2885 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kappes, J., et al.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015). https://doi.org/10.1007/s11263-015-0809-x

    Article  MathSciNet  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. preprint arXiv:1412.6980 (2014)

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. preprint arXiv:1312.6114 (2013)

  16. Kobyzev, I., Prince, S.D., Brubaker, M.A.: Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3964–3979 (2021)

    Article  Google Scholar 

  17. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  18. Miller, G.: Note on the Bias of Information Estimates. Information Theory in Psychology: Problems and Methods (1955)

    Google Scholar 

  19. Montgomery-Smith, S., Schürmann, T.: Unbiased estimators for entropy and class number. arXiv preprint arXiv:1410.5002 (2014)

  20. Pakzad, P., Anantharam, V.: Estimation and marginalization using Kikuchi approximation methods. Neural Comput. 17(8), 1836–1873 (2005)

    Article  MATH  Google Scholar 

  21. Paninski, L.: Estimation of entropy and mutual information. Neural Comput. 15(6), 1191–1253 (2003)

    Article  MATH  Google Scholar 

  22. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NIPS (2019)

    Google Scholar 

  23. Pathria, R.K., Beale, P.D.: Statistical Mechanics, 3rd edn. Academic Press (2011)

    Google Scholar 

  24. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents (2022)

    Google Scholar 

  25. Rizzo, T., Wemmenhove, B., Kappen, H.J.: Cavity approximation for graphical models. Phys. Rev. E 76(1), 011102 (2007)

    Article  Google Scholar 

  26. Ruthotto, L., Haber, E.: An introduction to deep generative modeling. GAMM Mitt. 44(2), 24 (2021)

    Article  MathSciNet  Google Scholar 

  27. Savarino, F., Schnörr, C.: Continuous-domain assignment flows. Eur. J. Appl. Math. 32(3), 570–597 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schnörr, C.: Assignment flows. In: Grohs, P., Holler, M., Weinmann, A. (eds.) Handbook of Variational Methods for Nonlinear Geometric Data, pp. 235–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31351-7_8

    Chapter  Google Scholar 

  29. Valiant, G., Valiant, P.: Estimating the unseen: an n/log (n)-sample estimator for entropy and support size, shown optimal via new CLTs. In: Proceedings of the 43th ACM Symposium on Theory of Computing, pp. 685–694 (2011)

    Google Scholar 

  30. Valiant, G., Valiant, P.: Estimating the unseen: improved estimators for entropy and other properties. J. ACM 64(6), 1–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wainwright, M.J., Jaakola, T.S., Willsky, A.S.: Tree-based reparameterization framework for analysis of sum-product and related algorithms. IEEE Trans. Inf. Theory 49(5), 1120–1146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    Article  MATH  Google Scholar 

  33. Wu, Y., Yang, P.: Minimax rates of entropy estimation on large alphabets via best polynomial approximation. IEEE Trans. Inf. Theory 62(6), 3702–3720 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric numerical integration of the assignment flow. Inverse Probl. 36(3), 034004 (33pp) (2020)

    Google Scholar 

  35. Zern, A., Zeilmann, A., Schnörr, C.: Assignment flows for data labeling on graphs: convergence and stability. Inf. Geom. 5, 355–404 (2022). https://doi.org/10.1007/s41884-021-00060-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by the Deutsche Forschungsgemeinschaft (DFG), grant SCHN 457/17-1, within the priority programme SPP 2298: “Theoretical Foundations of Deep Learning”. This work is funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Boll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boll, B., Schwarz, J., Gonzalez-Alvarado, D., Sitenko, D., Petra, S., Schnörr, C. (2023). Modeling Large-Scale Joint Distributions and Inference by Randomized Assignment. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics