Abstract
This chapter firstly introduces different examples of Earth applications based on the integration of different communication, navigation and sensing technologies. Then, it focuses on a case study for space applications based on definition of high level concept of a satellite communication and definition architecture for Moon exploration. In particular, it describes different ODTS (Orbit Determination and Timing Synchronisation) technologies able to enable an accurate lunar satellite navigation service. A dedicated analysis for each identified ODTS technique is provided in terms of achievable performances, solution complexity, scalability and near term implementation. Then, a candidate baseline ODTS concept for a precise lunar radio navigation is reported with a detailed performance analysis in terms of SISE (Signal in Space Signal Error), assuming an initial target value of 25 m at 95% as main system design requirement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
SAE J3016TM Levels of Driving Automation (2022). https://www.sae.org
P. Salvatori, C. Stallo, S. Pullen, S. Lo, A. Neri, An augmentation and integrity monitoring network for railway and automotive transportation, in 2019 International Technical Meeting of The Institute of Navigation 2019 (2019), pp. 790–801
Y. Breux, L. Lapierre, Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration. Sensors 20, 4028 (2020)
G. Fukuda, D. Hatta, X. Guo, N. Kubo, Performance evaluation of IMU and DVL integration in marine navigation. Sensors 21, 1056 (2021)
N. Jardak, Q. Jault, The potential of LEO satellite-based opportunistic navigation for high dynamic applications. Sensors 22, 2541 (2022)
Z.M. Kassas, Navigation with cellular signals of opportunity, in Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications Wiley-IEEE, vol. 2 (2021)
M. Li, T. Xu, M. Guan, F. Gao, N. Jiang, LEO-constellation-augmented multi-GNSS real-time PPP for rapid reconvergence in harsh environments. GPS Solut. 26(1) (2022)
SAR/GALILEO Service Definition Document, Issue 2.0, (2020). https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-SAR-SDD.pdf
200 Rescued from Chilly Arctic in Galileo/Cospas-Sarsat Demo (2021). https://insidegnss.com/200-rescued-from-chilly-arctic-in-galileo-cospas-sarsat-demo/.
Hybrid PNT Study (HybPNT): LEO Constellations, 5G, HAPS and GNSS Integration, European Commission, DG Defence Industry and Space (DEFIS) (2022). https://etendering.ted.europa.eu/cft/cft-display.html?cftId=11987
A. Grenier, P. Giordano, L. Bucci, A. Cropp, P. Zoccarato, R. Swinden, J. Ventura-Traveset, Positioning and velocity performance levels for a lunar lander using a dedicated lunar communication and navigation system. J. Inst. Navig. 69(2), 513 https://doi.org/10.33012/navi.513
NASA, The Global Exploration Roadmap (International Space Exploration Coordination Group, 2018) (2022). https://www.globalspaceexploration.org/wp-content/isecg/GER_Supplement_Update_2022.pdf
S. Kaplan, Eyes on the prize. The Strategic Implications of Cislunar Space (2020)
LunaNet Interoperability Specification Document, Version 4 (2022). https://esc.gsfc.nasa.gov/static-files/Draft∖20Interoperability∖20Specification∖20Final.pdf.
M. Schonfeldt, A. Grenier, A. Delepaut, P. Giordano, R. Swinden, J. Ventura-Traveset, Across the lunar landscape: towards a dedicated lunar pnt system, in Inside GNSS (2020)
C. Stallo, C. Di Lauro, M. Carosi, E.E. Zini, D. Musacchio, D. Cretoni, L. De Leo, M. Cappa, M. Laurenti, H. Boomkamp, P. Giordano, R. Swinden, J. Ventura-Traveset, Orbit determination and time transfer in selenodetic reference frames for a lunar radio navigation system, in 8th International Colloquium on Scientific and fundamental aspects of GNSS, Sofia, Bulgaria, September 14–16 (2022)
T.A. Ely, E. Lieb, Constellations of elliptical inclined lunar orbits providing polar and global coverage. J. Astron. Sci. 54(1) (2006)
C. Stallo, C. Di Lauro, M. Carosi, E.E. Zini, D. Musacchio, D. Cretoni, M. Laurenti, H. Boomkamp, P. Giordano, R. Swinden, J. Ventura-Traveset, Candidate system concepts for a lunar satellite navigation system, in NAVITEC 2022 Conference, ESA ESTEC, Netherlands (2022)
The Future Lunar Communications Architecture (IOAG) (2022). https://www.ioag.org/Public%20Documents/Lunar%20communications%20architecture%20study%20report%20FINAL%20v1.3.pdf
Protection of frequencies for radioastronomical measurements in the shielded zone of the Moon. ITU RA 479-5 (2003)
Communication Frequency allocations and sharing in the lunar region. SFCG 32-2R2 (2012)
“International Communication System Interoperability Standards (2019). https://nasasitebuilder.nasawestprime.com/wp-content/uploads/sites/45/2019/09/communication_baseline_final_3-2019.pdf
Ice Confirmed at the Moon’s Poles. https://www.nasa.gov/feature/ames/ice-confirmed-at-the-moon-s-poles
T.A Ely, Stable constellations of frozen elliptical inclined lunar orbits. J. Astron. Sci. 53(3) (2005)
T.A. Ely, E. Lieb, Constellations of elliptical inclined lunar orbits providing polar and global coverage. J. Astron. Sci. 54(4) (2006)
N. Tao, G. Pini, Lunar frozen orbits revisited. Celest. Mech. Dyn. Astron. 130(10) (2018)
R. Mackenzie, D. Lazaro Salvador, D. Milligan, SAO/NASA Astrophys. Data Syst (2004)
E. Mazarico, D.D. Rowlands, G.A. Neumann, D.E. Smith, M.H. Torrence, F.G. Lemoine, M.T. Zube, Orbit determination of the Lunar Reconnaissance Orbiter. J. Geod (2011)
E. Mazarico, X. Sun, J. Torre, C. Courde, J. Chabé, M. Aimar, H. Mariey, N. Maurice, M.K. Barker, D. Mao, D.R. Cremons, S. Bouquillon, T. Carlucci, V. Viswanathan, F.G. Lemoine, A. Bourgoin, P. Exertier, G.A. Neumann, M.T. Zuber, D.E. Smith, First Two-Way Laser Ranging to a Lunar Orbiter: Infrared Observations from the Grasse Station to LRO’s Retro-Reflector Array (Springer, Berlin, 2020)
A.J. Boonstra, M. Garrett, G. Kruithof, Discovering the sky at the longest wavelengths (DSL), in 2016 IEEE Aerospace Conference, Big Sky, Montana, U.S. (2016), pp. 1–20
R.T. Mitchell, Cassini/Huygens at saturn and titan. Acta Astron. 59(1–5), 335–343 (2006)
C. Li, Overview of the Chang’e-4 mission: opening the frontier of scientific exploration of the lunar far side space. Sci. Rev. 217, 35 (2021)
T.M. Eubanks, COMPASS: VLBI beacons in support of lunar science and exploration, in XXXIII General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science (Union Radio Scientifique Internationale-URSI), Rome, Italy (2020). https://doi.org/10.48550/arXiv.2005.09642
L. Winternitz, W. Bamford, S. Price, J. Carpenter, A. Long, M. Farahmand, Global positioning system navigation above 76,000 KM for NASA’S Magnetospheric Multiscale Mission. J. Navig. 64 (2017)
L. Winternitz, B. Bamford, A. Long, M. Hassouneh, GPS based autonomous navigation study for the lunar gateway, in NASA Presentation (2019). https://ntrs.nasa.gov/api/citations/20190001153/downloads/20190001153.pdf
NASA Moon Mission Set to Break Record in Navigation Signal Test (2022). https://www.nasa.gov/feature/goddard/2022/nasa-moon-mission-set-to-break-record-in-navigation-signal-test
M. Gregnanin, L. Iess, Librations and tides of the moon from same beam interferometry of a lander network, in European Planetary Science Congress (EPSC), vol. 7 (2012).
Argonaut – European Large Logistics Lander (2022). https://www.esa.int/Science_ Exploration/Human_and_Robotic_Exploration/Exploration/Argonaut_European_Large_ Logistics_Lander
Ansys STK. Software for Digital Mission Engineering and Systems Analysis. https://www.ansys.com/products/missions/ansys-stk
A. Delépaut, P. Giordano, J. Ventura-Traveset, D. Blonski, M. Schönfeldt, P. Schoonejans, S. Aziz, R. Walker, Use of GNSS for lunar missions and plans for Lunar In-Orbit Development. Adv. Space Res. 66 (2020)
P. Giordano, Use of GNSS for lunar missions and ESA plans for lunar IOD, in 7th Colloquium on Scientific and Fundamental Aspects of GNSS (2019)
G.B. Palmerini, M. Sabatini, G. Perrotta, En route to the Moon using GNSS signals. Acta Astron. 4, 467–483 (2009)
P. Giordano, A. Grenier, P. Zoccarato, R. Swinden, D. Trenta, E. Schoenemann, F. Liuccia, W. Enderle, B. Hufenbacha, J. Ventura-Traveset, Orbit determination and time synchronization in lunar orbit with GNSS - Lunar Pathfinder experiment, in 2nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October (2021)
M. Lombardi, Fundamentals of Time and Frequency, The Mechatronics Handbook, 1.0-8493-0066-5 (CRC Press, Boca Raton, 2002), pp. 341–358
W.J. Riley, Handbook of Frequency Stability Analysis (Special Publication, Boulder, 2008)
Bernese GNSS Software (2022). http://www.bernese.unibe.ch/
C. Stallo, C. Di Lauro, M. Carosi, E. E. Zini, D. Musacchio, D. Cretoni, L. De Leo, M. Cappa, M. Laurenti , H. Boomkamp, P. Giordano, R. Swinden, J. Ventura-Traveset, Orbit determination and time transfer in Selenodetic reference frames for a lunar radio navigation system, In 8th International Colloquium on Scientific and Fundamental Aspects of GNSS, 14–16 September (2022)
Acknowledgements
The authors would like to thank Daniele Musacchio and Enrico Edoardo Zini, (from Thales Alenia Space) for their contribution to this Chapter, and Pietro Giordano, Richard Swinden and Javier Ventura-Traveset from European Space Agency for their supervision on LRNS ODTS concept baseline conceived in the ESA TDE project “Lunar Radio Navigation System” (LRNS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Stallo, C. et al. (2023). Integration between Communication, Navigation and for Space Applications: Case Study on Lunar Satellite Navigation System with Focus on ODTS Techniques. In: Sacchi, C., Granelli, F., Bassoli, R., Fitzek, F.H.P., Ruggieri, M. (eds) A Roadmap to Future Space Connectivity. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-30762-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-30762-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30761-4
Online ISBN: 978-3-031-30762-1
eBook Packages: EngineeringEngineering (R0)