Nothing Special   »   [go: up one dir, main page]

Skip to main content

Integration between Communication, Navigation and for Space Applications: Case Study on Lunar Satellite Navigation System with Focus on ODTS Techniques

  • Chapter
  • First Online:
A Roadmap to Future Space Connectivity

Abstract

This chapter firstly introduces different examples of Earth applications based on the integration of different communication, navigation and sensing technologies. Then, it focuses on a case study for space applications based on definition of high level concept of a satellite communication and definition architecture for Moon exploration. In particular, it describes different ODTS (Orbit Determination and Timing Synchronisation) technologies able to enable an accurate lunar satellite navigation service. A dedicated analysis for each identified ODTS technique is provided in terms of achievable performances, solution complexity, scalability and near term implementation. Then, a candidate baseline ODTS concept for a precise lunar radio navigation is reported with a detailed performance analysis in terms of SISE (Signal in Space Signal Error), assuming an initial target value of 25 m at 95% as main system design requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SAE J3016TM Levels of Driving Automation (2022). https://www.sae.org

  2. P. Salvatori, C. Stallo, S. Pullen, S. Lo, A. Neri, An augmentation and integrity monitoring network for railway and automotive transportation, in 2019 International Technical Meeting of The Institute of Navigation 2019 (2019), pp. 790–801

    Google Scholar 

  3. Y. Breux, L. Lapierre, Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration. Sensors 20, 4028 (2020)

    Article  Google Scholar 

  4. G. Fukuda, D. Hatta, X. Guo, N. Kubo, Performance evaluation of IMU and DVL integration in marine navigation. Sensors 21, 1056 (2021)

    Article  Google Scholar 

  5. N. Jardak, Q. Jault, The potential of LEO satellite-based opportunistic navigation for high dynamic applications. Sensors 22, 2541 (2022)

    Article  Google Scholar 

  6. Z.M. Kassas, Navigation with cellular signals of opportunity, in Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications Wiley-IEEE, vol. 2 (2021)

    Google Scholar 

  7. M. Li, T. Xu, M. Guan, F. Gao, N. Jiang, LEO-constellation-augmented multi-GNSS real-time PPP for rapid reconvergence in harsh environments. GPS Solut. 26(1) (2022)

    Google Scholar 

  8. SAR/GALILEO Service Definition Document, Issue 2.0, (2020). https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-SAR-SDD.pdf

  9. 200 Rescued from Chilly Arctic in Galileo/Cospas-Sarsat Demo (2021). https://insidegnss.com/200-rescued-from-chilly-arctic-in-galileo-cospas-sarsat-demo/.

  10. Hybrid PNT Study (HybPNT): LEO Constellations, 5G, HAPS and GNSS Integration, European Commission, DG Defence Industry and Space (DEFIS) (2022). https://etendering.ted.europa.eu/cft/cft-display.html?cftId=11987

  11. https://moon.nasa.gov/exploration/moon-missions/ (2022)

  12. A. Grenier, P. Giordano, L. Bucci, A. Cropp, P. Zoccarato, R. Swinden, J. Ventura-Traveset, Positioning and velocity performance levels for a lunar lander using a dedicated lunar communication and navigation system. J. Inst. Navig. 69(2), 513 https://doi.org/10.33012/navi.513

  13. NASA, The Global Exploration Roadmap (International Space Exploration Coordination Group, 2018) (2022). https://www.globalspaceexploration.org/wp-content/isecg/GER_Supplement_Update_2022.pdf

  14. S. Kaplan, Eyes on the prize. The Strategic Implications of Cislunar Space (2020)

    Google Scholar 

  15. LunaNet Interoperability Specification Document, Version 4 (2022). https://esc.gsfc.nasa.gov/static-files/Draft∖20Interoperability∖20Specification∖20Final.pdf.

  16. M. Schonfeldt, A. Grenier, A. Delepaut, P. Giordano, R. Swinden, J. Ventura-Traveset, Across the lunar landscape: towards a dedicated lunar pnt system, in Inside GNSS (2020)

    Google Scholar 

  17. C. Stallo, C. Di Lauro, M. Carosi, E.E. Zini, D. Musacchio, D. Cretoni, L. De Leo, M. Cappa, M. Laurenti, H. Boomkamp, P. Giordano, R. Swinden, J. Ventura-Traveset, Orbit determination and time transfer in selenodetic reference frames for a lunar radio navigation system, in 8th International Colloquium on Scientific and fundamental aspects of GNSS, Sofia, Bulgaria, September 14–16 (2022)

    Google Scholar 

  18. T.A. Ely, E. Lieb, Constellations of elliptical inclined lunar orbits providing polar and global coverage. J. Astron. Sci. 54(1) (2006)

    Google Scholar 

  19. C. Stallo, C. Di Lauro, M. Carosi, E.E. Zini, D. Musacchio, D. Cretoni, M. Laurenti, H. Boomkamp, P. Giordano, R. Swinden, J. Ventura-Traveset, Candidate system concepts for a lunar satellite navigation system, in NAVITEC 2022 Conference, ESA ESTEC, Netherlands (2022)

    Google Scholar 

  20. The Future Lunar Communications Architecture (IOAG) (2022). https://www.ioag.org/Public%20Documents/Lunar%20communications%20architecture%20study%20report%20FINAL%20v1.3.pdf

  21. Protection of frequencies for radioastronomical measurements in the shielded zone of the Moon. ITU RA 479-5 (2003)

    Google Scholar 

  22. Communication Frequency allocations and sharing in the lunar region. SFCG 32-2R2 (2012)

    Google Scholar 

  23. “International Communication System Interoperability Standards (2019). https://nasasitebuilder.nasawestprime.com/wp-content/uploads/sites/45/2019/09/communication_baseline_final_3-2019.pdf

  24. Ice Confirmed at the Moon’s Poles. https://www.nasa.gov/feature/ames/ice-confirmed-at-the-moon-s-poles

  25. T.A Ely, Stable constellations of frozen elliptical inclined lunar orbits. J. Astron. Sci. 53(3) (2005)

    Google Scholar 

  26. T.A. Ely, E. Lieb, Constellations of elliptical inclined lunar orbits providing polar and global coverage. J. Astron. Sci. 54(4) (2006)

    Google Scholar 

  27. N. Tao, G. Pini, Lunar frozen orbits revisited. Celest. Mech. Dyn. Astron. 130(10) (2018)

    Google Scholar 

  28. R. Mackenzie, D. Lazaro Salvador, D. Milligan, SAO/NASA Astrophys. Data Syst (2004)

    Google Scholar 

  29. E. Mazarico, D.D. Rowlands, G.A. Neumann, D.E. Smith, M.H. Torrence, F.G. Lemoine, M.T. Zube, Orbit determination of the Lunar Reconnaissance Orbiter. J. Geod (2011)

    Google Scholar 

  30. E. Mazarico, X. Sun, J. Torre, C. Courde, J. Chabé, M. Aimar, H. Mariey, N. Maurice, M.K. Barker, D. Mao, D.R. Cremons, S. Bouquillon, T. Carlucci, V. Viswanathan, F.G. Lemoine, A. Bourgoin, P. Exertier, G.A. Neumann, M.T. Zuber, D.E. Smith, First Two-Way Laser Ranging to a Lunar Orbiter: Infrared Observations from the Grasse Station to LRO’s Retro-Reflector Array (Springer, Berlin, 2020)

    Google Scholar 

  31. A.J. Boonstra, M. Garrett, G. Kruithof, Discovering the sky at the longest wavelengths (DSL), in 2016 IEEE Aerospace Conference, Big Sky, Montana, U.S. (2016), pp. 1–20

    Google Scholar 

  32. R.T. Mitchell, Cassini/Huygens at saturn and titan. Acta Astron. 59(1–5), 335–343 (2006)

    Article  Google Scholar 

  33. C. Li, Overview of the Chang’e-4 mission: opening the frontier of scientific exploration of the lunar far side space. Sci. Rev. 217, 35 (2021)

    Google Scholar 

  34. T.M. Eubanks, COMPASS: VLBI beacons in support of lunar science and exploration, in XXXIII General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science (Union Radio Scientifique Internationale-URSI), Rome, Italy (2020). https://doi.org/10.48550/arXiv.2005.09642

  35. L. Winternitz, W. Bamford, S. Price, J. Carpenter, A. Long, M. Farahmand, Global positioning system navigation above 76,000 KM for NASA’S Magnetospheric Multiscale Mission. J. Navig. 64 (2017)

    Google Scholar 

  36. L. Winternitz, B. Bamford, A. Long, M. Hassouneh, GPS based autonomous navigation study for the lunar gateway, in NASA Presentation (2019). https://ntrs.nasa.gov/api/citations/20190001153/downloads/20190001153.pdf

  37. NASA Moon Mission Set to Break Record in Navigation Signal Test (2022). https://www.nasa.gov/feature/goddard/2022/nasa-moon-mission-set-to-break-record-in-navigation-signal-test

  38. M. Gregnanin, L. Iess, Librations and tides of the moon from same beam interferometry of a lander network, in European Planetary Science Congress (EPSC), vol. 7 (2012).

    Google Scholar 

  39. Argonaut – European Large Logistics Lander (2022). https://www.esa.int/Science_ Exploration/Human_and_Robotic_Exploration/Exploration/Argonaut_European_Large_ Logistics_Lander

  40. Ansys STK. Software for Digital Mission Engineering and Systems Analysis. https://www.ansys.com/products/missions/ansys-stk

  41. A. Delépaut, P. Giordano, J. Ventura-Traveset, D. Blonski, M. Schönfeldt, P. Schoonejans, S. Aziz, R. Walker, Use of GNSS for lunar missions and plans for Lunar In-Orbit Development. Adv. Space Res. 66 (2020)

    Google Scholar 

  42. P. Giordano, Use of GNSS for lunar missions and ESA plans for lunar IOD, in 7th Colloquium on Scientific and Fundamental Aspects of GNSS (2019)

    Google Scholar 

  43. G.B. Palmerini, M. Sabatini, G. Perrotta, En route to the Moon using GNSS signals. Acta Astron. 4, 467–483 (2009)

    Article  Google Scholar 

  44. P. Giordano, A. Grenier, P. Zoccarato, R. Swinden, D. Trenta, E. Schoenemann, F. Liuccia, W. Enderle, B. Hufenbacha, J. Ventura-Traveset, Orbit determination and time synchronization in lunar orbit with GNSS - Lunar Pathfinder experiment, in 2nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October (2021)

    Google Scholar 

  45. M. Lombardi, Fundamentals of Time and Frequency, The Mechatronics Handbook, 1.0-8493-0066-5 (CRC Press, Boca Raton, 2002), pp. 341–358

    Google Scholar 

  46. W.J. Riley, Handbook of Frequency Stability Analysis (Special Publication, Boulder, 2008)

    Book  Google Scholar 

  47. Bernese GNSS Software (2022). http://www.bernese.unibe.ch/

  48. C. Stallo, C. Di Lauro, M. Carosi, E. E. Zini, D. Musacchio, D. Cretoni, L. De Leo, M. Cappa, M. Laurenti , H. Boomkamp, P. Giordano, R. Swinden, J. Ventura-Traveset, Orbit determination and time transfer in Selenodetic reference frames for a lunar radio navigation system, In 8th International Colloquium on Scientific and Fundamental Aspects of GNSS, 14–16 September (2022)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniele Musacchio and Enrico Edoardo Zini, (from Thales Alenia Space) for their contribution to this Chapter, and Pietro Giordano, Richard Swinden and Javier Ventura-Traveset from European Space Agency for their supervision on LRNS ODTS concept baseline conceived in the ESA TDE project “Lunar Radio Navigation System” (LRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Stallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stallo, C. et al. (2023). Integration between Communication, Navigation and for Space Applications: Case Study on Lunar Satellite Navigation System with Focus on ODTS Techniques. In: Sacchi, C., Granelli, F., Bassoli, R., Fitzek, F.H.P., Ruggieri, M. (eds) A Roadmap to Future Space Connectivity. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-30762-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30762-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30761-4

  • Online ISBN: 978-3-031-30762-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics