Nothing Special   »   [go: up one dir, main page]

Skip to main content

Combining Autoencoder with Adaptive Differential Privacy for Federated Collaborative Filtering

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

Abstract

Recommender systems provide users personalized services by collecting and analyzing interaction data, undermining user privacy to a certain extent. In federated recommender systems, users can train models on local devices without uploading raw data. Nevertheless, model updates transmitted between the user and the server are still vulnerable to privacy inference attacks. Several studies adopt differential privacy to obfuscate transmitted updates, but they ignore the privacy sensitivity of recommender model components. The problem is that components closer to the original data are more susceptible to privacy leakage. To address this point, we propose a novel adaptive privacy-preserving method combining autoencoder for federated collaborative filtering, which guarantees privacy meanwhile maintaining high model performance. First, we extend the variational autoencoder (VAE) to federated settings for privacy-preserving recommendations. Additionally, we analyze the privacy risks of the variational autoencoder model in federated collaborative filtering. Subsequently, we propose an adaptive differential privacy method to enhance user privacy further. The key is to allocate less privacy budget for sensitive layers. We apply a metric based on model weights to determine the privacy sensitivity of each layer in the autoencoder. Then we adaptively allocate the privacy budget to the corresponding model layer. Extensive experiments and analysis demonstrate that our method can achieve competitive performance to non-private recommender models meanwhile providing fine-grained privacy protection.

Supported by the National Natural Science Foundation of China under Grant No. 62272180.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gdpr-info.eu.

  2. 2.

    http://grouplens.org/datasets/movielens/1m/.

  3. 3.

    https://grouplens.org/datasets/hetrec-2011/.

  4. 4.

    https://www.kaggle.com/tamber/steam-video-games/.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Ammad-Ud-Din, M., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019)

  3. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  4. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2020)

    Article  Google Scholar 

  5. Chen, C., Campbell, N.: Understanding training-data leakage from gradients in neural networks for image classification. In: Workshop Privacy in Machine Learning, NeurIPS 2021 (2021)

    Google Scholar 

  6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. J. Priv. Confidentiality 7(3), 17–51 (2016)

    Article  MATH  Google Scholar 

  7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    Google Scholar 

  8. Feng, T., Hashemi, H., Hebbar, R., Annavaram, M., Narayanan, S.S.: Attribute inference attack of speech emotion recognition in federated learning settings. arXiv preprint arXiv:2112.13416 (2021)

  9. Flanagan, A., Oyomno, W., Grigorievskiy, A., Tan, K.E., Khan, S.A., Ammad-Ud-Din, M.: Federated multi-view matrix factorization for personalized recommendations. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12458, pp. 324–347. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67661-2_20

    Chapter  Google Scholar 

  10. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  11. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  12. Jalalirad, A., Scavuzzo, M., Capota, C., Sprague, M.: A simple and efficient federated recommender system. In: Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, pp. 53–58 (2019)

    Google Scholar 

  13. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  14. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential privacy. In: International Conference on Machine Learning, pp. 1376–1385. PMLR (2015)

    Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  16. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, pp. 689–698 (2018)

    Google Scholar 

  17. Liang, F., Pan, W., Ming, Z.: FedRec++: lossless federated recommendation with explicit feedback. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4224–4231 (2021)

    Google Scholar 

  18. Lin, G., Liang, F., Pan, W., Ming, Z.: FedRec: federated recommendation with explicit feedback. IEEE Intell. Syst. 36(5), 21–30 (2020)

    Article  Google Scholar 

  19. Lin, M., et al.: Pruning networks with cross-layer ranking & k-reciprocal nearest filters. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  20. Liu, Z., Yang, L., Fan, Z., Peng, H., Yu, P.S.: Federated social recommendation with graph neural network. ACM Trans. Intell. Syst. Technol. (TIST) 13(4), 1–24 (2022)

    Google Scholar 

  21. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  22. Minto, L., Haller, M., Livshits, B., Haddadi, H.: Stronger privacy for federated collaborative filtering with implicit feedback. In: Fifteenth ACM Conference on Recommender Systems, pp. 342–350 (2021)

    Google Scholar 

  23. Muhammad, K., et al.: FedFast: going beyond average for faster training of federated recommender systems. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1234–1242 (2020)

    Google Scholar 

  24. Perifanis, V., Efraimidis, P.S.: Federated neural collaborative filtering. Knowl.-Based Syst. 242, 108441 (2022)

    Article  Google Scholar 

  25. Phan, N., Wu, X., Hu, H., Dou, D.: Adaptive laplace mechanism: differential privacy preservation in deep learning. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 385–394. IEEE (2017)

    Google Scholar 

  26. Polato, M.: Federated variational autoencoder for collaborative filtering. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  27. Qi, T., Wu, F., Wu, C., Huang, Y., Xie, X.: Privacy-preserving news recommendation model learning. arXiv preprint arXiv:2003.09592 (2020)

  28. Reddi, S.J., et al.: Adaptive federated optimization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  29. Schreyer, M., Sattarov, T., Borth, D.: Federated and privacy-preserving learning of accounting data in financial statement audits. arXiv preprint arXiv:2208.12708 (2022)

  30. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, pp. 111–112 (2015)

    Google Scholar 

  31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Wang, Q., Yin, H., Chen, T., Yu, J., Zhou, A., Zhang, X.: Fast-adapting and privacy-preserving federated recommender system. VLDB J. 31(5), 877–896 (2022)

    Article  Google Scholar 

  33. Wu, C., Wu, F., Cao, Y., Huang, Y., Xie, X.: FedGNN: federated graph neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925 (2021)

  34. Yang, E., Huang, Y., Liang, F., Pan, W., Ming, Z.: FCMF: federated collective matrix factorization for heterogeneous collaborative filtering. Knowl.-Based Syst. 220, 106946 (2021)

    Article  Google Scholar 

  35. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  36. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, X., Li, G., Yuan, L., Zhang, L., Rong, Q. (2023). Combining Autoencoder with Adaptive Differential Privacy for Federated Collaborative Filtering. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics