Nothing Special   »   [go: up one dir, main page]

Skip to main content

Anomaly Detection in Financial Transactions Via Graph-Based Feature Aggregations

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14148))

Included in the following conference series:

  • 892 Accesses

Abstract

Anomaly detection in the financial domain aims to detect abnormal transactions such as fraudulent transactions that can lead to loss of revenues to financial institutions. Existing solutions utilize solely transaction attributes as feature representations without the consideration of direct/indirect interactions between users and transactions, leading to limited accuracy. We formulate anomaly detection in financial transactions as the problem of edge classification in an edge-attributed multigraph, where each transaction is regarded as an edge, and each user is represented by a node. Then, we propose an effective solution \(\texttt{DoubleFA}\), which contains two novel schemes: proximal feature aggregation and anomaly feature aggregation. The former is to aggregate features from neighborhoods into edges based on top-k Personalized PageRank (PPR). In anomaly feature aggregation, we employ a predict-and-aggregate strategy to accurately preserve anomaly information, thereby alleviating the over-smoothing issue incurred by proximal feature aggregation. Our experiments comparing \(\texttt{DoubleFA}\) against 10 baselines on real transaction datasets from PayPal demonstrate that \(\texttt{DoubleFA}\) consistently outperforms all baselines in terms of anomaly detection accuracy. In particular, on the full PayPal dataset with 160 million users and 470 million transactions, our method achieves a significant improvement of at least 23% in F1 score compared to the best competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415(1), 20–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, vol. 13–17-August, pp. 785–794 (2016)

    Google Scholar 

  3. Dai, Q., Shen, X., Zhang, L., Li, Q., Wang, D.: Adversarial training methods for network embedding. In: WWW, pp. 329–339 (2019)

    Google Scholar 

  4. Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): a fast unsupervised anomaly detection algorithm. KI(1), 59–63 (2012)

    Google Scholar 

  5. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 187, 104816 (2020)

    Article  Google Scholar 

  6. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)

    Google Scholar 

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS, pp. 1025–1035, June 2017

    Google Scholar 

  8. Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., Qi, Y.: Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. In: AAAI, pp. 946–953 (2019)

    Google Scholar 

  9. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279 (2003)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  11. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized PageRank. In: ICLR, October 2019

    Google Scholar 

  12. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422 (2008)

    Google Scholar 

  13. Liu, Y., et al.: Pick and choose: a GNN-based imbalanced learning approach for fraud detection. In: WWW, pp. 3168–3177. WWW 2021 (2021)

    Google Scholar 

  14. Liu, Z., Dou, Y., Yu, P.S., Deng, Y., Peng, H., Peng, H.: Alleviating the inconsistency problem of applying graph neural network to fraud detection. In: SIGIR, pp. 1569–1572 (2020)

    Google Scholar 

  15. PayPal Holdings Inc: Annual Report Pursuant to Section 13 or 15(d) of The Securities Exchange Act of 1934. https://www.sec.gov/Archives/edgar/data/1633917/000163391721000018/pypl-20201231.html(2020)

  16. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online learning of social representations. In: KDD, pp. 701–710 (2014)

    Google Scholar 

  17. Qiu, J., et al.: Netsmf: large-scale network embedding as sparse matrix factorization. In: WWW, pp. 1509–1520 (2019)

    Google Scholar 

  18. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. SIGMOD Record 29(2), 427–438 (2000)

    Article  Google Scholar 

  19. Ravisankar, P., Ravi, V., Raghava Rao, G., Bose, I.: Detection of financial statement fraud and feature selection using data mining techniques. In: DSS, pp. 491–500 (2011)

    Google Scholar 

  20. Swersky, L., Marques, H.O., Jörg, S., Campello, R.J., Zimek, A.: On the evaluation of outlier detection and one-class classification methods. In: DSAA, pp. 1–10 (2016)

    Google Scholar 

  21. Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A., Bengio, Y.: Graph attention networks. Technical Report (2018)

    Google Scholar 

  22. Wang, C., Wang, C., Wang, Z., Ye, X., Yu, P.S.: Edge2vec: edge-based social network embedding. TKDD 14(4), 1–24 (2020)

    Article  Google Scholar 

  23. Wang, D., et al.: A semi-supervised graph attentive network for financial fraud detection. In: ICDM, pp. 598–607 (2019)

    Google Scholar 

  24. Wang, J., Wen, R., Wu, C., Huang, Y., Xiong, J.: FDGars: fraudster detection via graph convolutional networks in online app review system. In: WWW, pp. 310–316 (2019)

    Google Scholar 

  25. Wang, S., Yang, R., Xiao, X., Wei, Z., Yang, Y.: FORA: simple and effective approximate single-source personalized PageRank. In: KDD, pp. 505–514 (2017)

    Google Scholar 

  26. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv (2019)

    Google Scholar 

  27. Wu, F., Zhang, T., de Souza, A.H., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolutional networks. In: arXiv (2019)

    Google Scholar 

  28. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS. vol. 32 (2019)

    Google Scholar 

  29. Zhang, Y., Fan, Y., Ye, Y., Zhao, L., Shi, C.: Key player identification in underground forums over attributed heterogeneous information network embedding framework. In: CIKM, pp. 549–558, November 2019

    Google Scholar 

  30. Zhang, Z., Cui, P., Li, H., Wang, X., Zhu, W.: Billion-scale network embedding with iterative random projection. In: ICDM, pp. 787–796 (2018)

    Google Scholar 

  31. Zhang, Z., Pei, J., Cui, P., Yao, X., Wang, X., Zhu, W.: Arbitrary-order proximity preserved network embedding. In: KDD, pp. 2778–2786 (2018)

    Google Scholar 

  32. Zhong, Q., et al.: Financial defaulter detection on online credit payment via multi-view attributed heterogeneous information network. In: WWW, pp. 785–795, April 2020

    Google Scholar 

  33. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: Current limitations and effective designs. In: NeurIPS, vol. 2020-December (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hewen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Yang, R., Shi, J. (2023). Anomaly Detection in Financial Transactions Via Graph-Based Feature Aggregations. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics