Abstract
Microblogs have become popular media platforms for reporting and propagating news. However, they also enable the proliferation of misleading information that can cause serious damage. Thus, many efforts have been taken to defeat rumors automatically. While several innovative solutions for rumor detection and classification have been developed, the lack of comprehensive and labeled datasets remains a major limitation. Existing datasets are scarce and none of them provide all of the features that have proven to be effective for rumor analysis. To mitigate this problem, we propose a big data-sized dataset called DAT@Z21, which provides news contents with rich features including textual contents, social context, social engagement of users and spatiotemporal information. Furthermore, DAT@Z21 also provides visual contents, i.e., images, which play a crucial role in the news diffusion process. We conduct exploratory analyses to understand our dataset’s characteristics and analyze useful patterns. We also experiment various state-of-the-art rumor classification methods to illustrate DAT@Z21’s usefulness, especially its visual components. Eventually, DAT@Z21 is available online at https://git.msh-lse.fr/eric/dataz21.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
References
Azri, A., Favre, C., Harbi, N., Darmont, J., Noûs, C.: Calling to CNN-LSTM for rumor detection: a deep multi-channel model for message veracity classification in microblogs. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12979, pp. 497–513. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86517-7_31
Cao, J., Guo, J., Li, X., Jin, Z., Guo, H., Li, J.: Automatic rumor detection on microblogs: a survey. arXiv preprint arXiv:1807.03505 (2018)
Cui, L., Lee, D.: CoAID: COVID-19 healthcare misinformation dataset. arXiv preprint arXiv:2006.00885 (2020)
Dai, E., Sun, Y., Wang, S.: Ginger cannot cure cancer: battling fake health news with a comprehensive data repository. In: Proceedings of the AAAI ICWSM, vol. 14, pp. 853–862 (2020)
Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real time. Lancet. Infect. Dis 20(5), 533–534 (2020)
Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkX. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)
Jin, Z., Cao, J., Guo, H., Zhang, Y., Luo, J.: Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: ICM 2017, pp. 795–816. ACM (2017)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of EMNLP, pp. 1746–1751. ACL, Doha, Qatar (2014)
Latif, S., et al.: Leveraging data science to combat COVID-19: a comprehensive review. IEEE Trans. AI 1(1), 85–103 (2020)
Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on EMNLP, pp. 404–411 (2004)
Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations. In: Ninth AAAI ICWSM (2015)
Nørregaard, J., Horne, B.D., Adalı, S.: NELA-GT-2018: a large multi-labelled news dataset for the study of misinformation in news articles. In: Proceedings of the AAAI ICWSM, vol. 13, pp. 630–638 (2019)
Pathak, A.R., Mahajan, A., Singh, K., Patil, A., Nair, A.: Analysis of techniques for rumor detection in social media. Procedia Comput. Sci. 167, 2286–2296 (2020)
Salem, F.K.A., Al Feel, R., Elbassuoni, S., Jaber, M., Farah, M.: Fa-kes: A fake news dataset around the Syrian war. In: Proceedings of the AAAI ICWSM, vol. 13, pp. 573–582 (2019)
Shahi, G.K., Nandini, D.: FakeCovid-a multilingual cross-domain fact check news dataset for COVID-19. arXiv preprint arXiv:2006.11343 (2020)
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: a data repository with news content, social context and spatialtemporal information for studying fake news on social media. arXiv preprint arXiv:1809.01286 (2018)
Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)
Shuja, J., Alanazi, E., Alasmary, W., Alashaikh, A.: COVID-19 open source data sets: a comprehensive survey. Appl. Intell. 51, 1–30 (2020)
Tacchini, E., Ballarin, G., Della Vedova, M.L., Moret, S., de Alfaro, L.: Some like it hoax: automated fake news detection in social networks. arXiv preprint arXiv:1704.07506 (2017)
Wang, W.Y.: “Liar, Liar Pants on Fire”: A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648 (2017)
Zhou, X., Mulay, A., Ferrara, E., Zafarani, R.: Recovery: A multimodal repository for COVID-19 news credibility research. In: Proceedings of the 29th ACM CIKM, pp. 3205–3212 (2020)
Zhou, X., Wu, J., Zafarani, R.: \(\sf SAFE\): similarity-aware multi-modal fake news detection. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 354–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Azri, A., Favre, C., Harbi, N., Darmont, J., Noûs, C. (2023). DAT@Z21: A Comprehensive Multimodal Dataset for Rumor Classification in Microblogs. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-39831-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39830-8
Online ISBN: 978-3-031-39831-5
eBook Packages: Computer ScienceComputer Science (R0)