Nothing Special   »   [go: up one dir, main page]

Skip to main content

DAT@Z21: A Comprehensive Multimodal Dataset for Rumor Classification in Microblogs

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Abstract

Microblogs have become popular media platforms for reporting and propagating news. However, they also enable the proliferation of misleading information that can cause serious damage. Thus, many efforts have been taken to defeat rumors automatically. While several innovative solutions for rumor detection and classification have been developed, the lack of comprehensive and labeled datasets remains a major limitation. Existing datasets are scarce and none of them provide all of the features that have proven to be effective for rumor analysis. To mitigate this problem, we propose a big data-sized dataset called DAT@Z21, which provides news contents with rich features including textual contents, social context, social engagement of users and spatiotemporal information. Furthermore, DAT@Z21 also provides visual contents, i.e., images, which play a crucial role in the news diffusion process. We conduct exploratory analyses to understand our dataset’s characteristics and analyze useful patterns. We also experiment various state-of-the-art rumor classification methods to illustrate DAT@Z21’s usefulness, especially its visual components. Eventually, DAT@Z21 is available online at https://git.msh-lse.fr/eric/dataz21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Pizzagate_conspiracy_theory.

  2. 2.

    https://coronavirus.jhu.edu/map.html.

  3. 3.

    https://www.buzzfeed.com/.

  4. 4.

    https://www.cs.ucsb.edu/william/data/liardataset.zip.

  5. 5.

    https://www.politifact.com/factchecks/.

  6. 6.

    https://www.kaggle.com/mrisdal/fake-news.

  7. 7.

    https://github.com/KaiDMML/FakeNewsNet.

  8. 8.

    http://compsocial.github.io/CREDBANK-data/.

  9. 9.

    www.PolitiFact.com/factchecks/.

  10. 10.

    https://pypi.org/project/beautifulsoup4/.

  11. 11.

    https://developer.twitter.com/en/products/twitter-api/academic-research/product-details.

  12. 12.

    https://developer.twitter.com/en/developer-terms/agreement-and-policy.

  13. 13.

    https://github.com/Jindi0/SAFE.

References

  1. Azri, A., Favre, C., Harbi, N., Darmont, J., Noûs, C.: Calling to CNN-LSTM for rumor detection: a deep multi-channel model for message veracity classification in microblogs. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12979, pp. 497–513. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86517-7_31

    Chapter  Google Scholar 

  2. Cao, J., Guo, J., Li, X., Jin, Z., Guo, H., Li, J.: Automatic rumor detection on microblogs: a survey. arXiv preprint arXiv:1807.03505 (2018)

  3. Cui, L., Lee, D.: CoAID: COVID-19 healthcare misinformation dataset. arXiv preprint arXiv:2006.00885 (2020)

  4. Dai, E., Sun, Y., Wang, S.: Ginger cannot cure cancer: battling fake health news with a comprehensive data repository. In: Proceedings of the AAAI ICWSM, vol. 14, pp. 853–862 (2020)

    Google Scholar 

  5. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real time. Lancet. Infect. Dis 20(5), 533–534 (2020)

    Article  Google Scholar 

  6. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkX. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  7. Jin, Z., Cao, J., Guo, H., Zhang, Y., Luo, J.: Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: ICM 2017, pp. 795–816. ACM (2017)

    Google Scholar 

  8. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of EMNLP, pp. 1746–1751. ACL, Doha, Qatar (2014)

    Google Scholar 

  9. Latif, S., et al.: Leveraging data science to combat COVID-19: a comprehensive review. IEEE Trans. AI 1(1), 85–103 (2020)

    MathSciNet  Google Scholar 

  10. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on EMNLP, pp. 404–411 (2004)

    Google Scholar 

  11. Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations. In: Ninth AAAI ICWSM (2015)

    Google Scholar 

  12. Nørregaard, J., Horne, B.D., Adalı, S.: NELA-GT-2018: a large multi-labelled news dataset for the study of misinformation in news articles. In: Proceedings of the AAAI ICWSM, vol. 13, pp. 630–638 (2019)

    Google Scholar 

  13. Pathak, A.R., Mahajan, A., Singh, K., Patil, A., Nair, A.: Analysis of techniques for rumor detection in social media. Procedia Comput. Sci. 167, 2286–2296 (2020)

    Article  Google Scholar 

  14. Salem, F.K.A., Al Feel, R., Elbassuoni, S., Jaber, M., Farah, M.: Fa-kes: A fake news dataset around the Syrian war. In: Proceedings of the AAAI ICWSM, vol. 13, pp. 573–582 (2019)

    Google Scholar 

  15. Shahi, G.K., Nandini, D.: FakeCovid-a multilingual cross-domain fact check news dataset for COVID-19. arXiv preprint arXiv:2006.11343 (2020)

  16. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: a data repository with news content, social context and spatialtemporal information for studying fake news on social media. arXiv preprint arXiv:1809.01286 (2018)

  17. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    Article  Google Scholar 

  18. Shuja, J., Alanazi, E., Alasmary, W., Alashaikh, A.: COVID-19 open source data sets: a comprehensive survey. Appl. Intell. 51, 1–30 (2020)

    Google Scholar 

  19. Tacchini, E., Ballarin, G., Della Vedova, M.L., Moret, S., de Alfaro, L.: Some like it hoax: automated fake news detection in social networks. arXiv preprint arXiv:1704.07506 (2017)

  20. Wang, W.Y.: “Liar, Liar Pants on Fire”: A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648 (2017)

  21. Zhou, X., Mulay, A., Ferrara, E., Zafarani, R.: Recovery: A multimodal repository for COVID-19 news credibility research. In: Proceedings of the 29th ACM CIKM, pp. 3205–3212 (2020)

    Google Scholar 

  22. Zhou, X., Wu, J., Zafarani, R.: \(\sf SAFE\): similarity-aware multi-modal fake news detection. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 354–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazek Azri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azri, A., Favre, C., Harbi, N., Darmont, J., Noûs, C. (2023). DAT@Z21: A Comprehensive Multimodal Dataset for Rumor Classification in Microblogs. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics