Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Video Captioning with Frame Similarity-Based Filtering

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2023)

Abstract

Video captioning combines computer vision and Natural Language Processing (NLP) to perform the challenging task of scene understanding. The rapid advancements in artificial intelligence have led to a growing interest in video captioning, which involves generating natural language descriptions based on the visual content of videos. In this paper, we present a novel approach to video caption generation. The proposed method first extracts frames from the video and reduces the number of frames based on their similarity. The remaining frames are then processed by a Convolution Neural Network (CNN) to extract a feature vector, which is then fed into a Long Short-Term Memory (LSTM) network to generate the captions. The results are compared with the state-of-the-art models which demonstrate that the proposed approach outperforms the existing methods on MSVD, M-VAD, and MPII-MD datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  2. Janssens, R., Demeester, T., Belpaeme, T.: Visual conversation starters for human-robot interaction (2022)

    Google Scholar 

  3. Jiang, L., Ladner, R.: Co-designing systems to support blind and low vision audio description writers. In: Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 1–3 (2022)

    Google Scholar 

  4. Bhooshan, R.S., Suresh, K.: A multimodal framework for video caption generation. IEEE Access 10, 92166–92176 (2022)

    Article  Google Scholar 

  5. Guadarrama, S., et al.: YouTube2Text: recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition. In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  6. Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating videos to natural language using deep recurrent neural networks. In: Conference of the North American Chapter of the Association for Computational Linguistics (NAACL) (2015)

    Google Scholar 

  7. Yao, L., et al.: Describing videos by exploiting temporal structure. arXiv preprint arXiv:1502.08029v4 (2015)

  8. Hu, Y., Luo, C., Chen, Z.: Make it move: controllable image-to-video generation with text descriptions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18219–18228 (2022)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: International Conference on Machine Learning (ICML) (2014)

    Google Scholar 

  11. Mahfuz, S., Isah, H., Zulkernine, F., Nicholls, P.: Detecting irregular patterns in IoT streaming data for fall detection. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 588–594. IEEE (2018)

    Google Scholar 

  12. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Conference on Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  13. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R.J., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: ICCV, pp. 4534–4542 (2015)

    Google Scholar 

  14. Chen, D.L., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: ACL (2011)

    Google Scholar 

  15. Torabi, A., Pal, C., Larochelle, H., Courville, A.: Using descriptive video services to create a large data source for video annotation research. arXiv preprint arXiv:1503.01070 (2015)

  16. Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: CVPR (2015)

    Google Scholar 

  17. Wang, H., Zhang, Y., Yu, X., et al.: An overview of image caption generation methods. Comput. Intell. Neurosci. 2020 (2020)

    Google Scholar 

  18. Lee, M.W., Hakeem, A., Haering, N., Zhu, S.: SAVE: a framework for semantic annotation of visual events. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  19. Kojima, A., Tamura, T., Fukunaga, K.: Natural language description of human activities from video images based on concept hierarchy of actions. Int. J. Comput. Vision 50, 171–184 (2002)

    Article  MATH  Google Scholar 

  20. Khan, M.U.G., Zhang, L., Gotoh, Y.: Human focused video description. In: ICCV, pp. 1480–1487 (2011)

    Google Scholar 

  21. Hanckmann, P., Schutte, K., Burghouts, G.J.: Automated textual descriptions for a wide range of video events with 48 human actions. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 372–380. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_37

    Chapter  Google Scholar 

  22. Farhadi, A., Hejrati, M., Sadeghi, M.A., Young, P., Rashtchian, C., Hockenmaier, J., Forsyth, D.: Every picture tells a story: generating sentences from images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 15–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_2

    Chapter  Google Scholar 

  23. Rohrbach, M., Qiu, W., Titov, I., Thater, S., Pinkal, M., Schiele, B: Translating video content to natural language descriptions. In: ICCV, pp. 433–440 (2013)

    Google Scholar 

  24. Guo, Z., Gao, L., Song, J., Xu, X., Shao, J., Shen, H.T.: Attention-based LSTM with semantic consistency for videos captioning. In: ACM MM, pp. 357–361 (2016)

    Google Scholar 

  25. Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling embedding and translation to bridge video and language. In: CVPR, pp. 4594–4602 (2016)

    Google Scholar 

  26. Yao, L., et al.: Describing videos by exploiting temporal structure. In: ICCV, pp. 4507–4515 (2015)

    Google Scholar 

  27. Pan, Y., Yao, T., Li, H., Mei, T.: Video captioning with transferred semantic attributes. In: CVPR (2017)

    Google Scholar 

  28. Long, X., Gan, C.-Y., de Melo, G.: Video captioning with multi-faceted attention. CoRR, abs/1612.00234 (2016)

    Google Scholar 

  29. Song, J., Gao, L., Guo, Z., Liu, W., Zhang, D., Shen, H.T.: Hierarchical LSTM with adjusted temporal attention for video captioning. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 2737–2743 (2017)

    Google Scholar 

  30. Yu, Y., Choi, J.-S., Kim, Y., Yoo, K., Lee, S., Kim, G.: Supervising neural attention models for video captioning by human gaze data. In: CVPR (2017)

    Google Scholar 

  31. Zeiler, M.D.: AdaDelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  32. Yang, A., et al.: Vid2Seq: large-scale pretraining of a visual language model for dense video captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10714–10726 (2023)

    Google Scholar 

  33. Wang, Z., et al.: Language models with image descriptors are strong few-shot video-language learners. arXiv preprint arXiv:2205.10747 (2022)

  34. Li, M., et al.: Clip-event: connecting text and images with event structures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16420–16429 (2022)

    Google Scholar 

  35. Yang, Y., Hospedales, T.: Deep multi-task representation learning: a tensor factorisation approach. In: International Conference on Learning Representations (2017)

    Google Scholar 

  36. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: two new techniques for image matching. Technical report, SRI AI Center (1977)

    Google Scholar 

  37. Zaremba, W., Sutskever, I.: Learning to execute. arXiv preprint arXiv:1410.4615 (2014)

  38. Maćkiewicz, A., Ratajczak, W.: Principal components analysis (PCA). Comput. Geosci. 19(3), 303–342 (1993)

    Article  Google Scholar 

  39. Koonce, B., Koonce, B.: VGG network. In: Koonce, B. (ed.) Convolutional Neural Networks with Swift for Tensorflow, pp. 35–50. Springer, Cham (2021). https://doi.org/10.1007/978-1-4842-6168-2_4

    Chapter  Google Scholar 

  40. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. CoRR, abs/1404.5997 (2014)

    Google Scholar 

  41. Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: CVPR (2015)

    Google Scholar 

  42. Denkowski, M., Lavie, A.: Meteor universal: language specific translation evaluation for any target language. In: EACL (2014)

    Google Scholar 

  43. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: ACL (2002)

    Google Scholar 

  44. Lin, C.-Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, pp. 74–81 (2004)

    Google Scholar 

  45. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  46. Thomason, J., Venugopalan, S., Guadarrama, S., Saenko, K., Mooney, R.J.: Integrating language and vision to generate natural language descriptions of videos in the wild. In: COLING (2014)

    Google Scholar 

  47. Hodosh, M., Young, P., Lai, A., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. In: TACL (2014)

    Google Scholar 

  48. Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating videos to natural language using deep recurrent neural networks. In: NAACL (2015)

    Google Scholar 

  49. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  50. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  51. Rohrbach, A., Rohrbach, M., Schiele, B.: The long-short story of movie description. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 209–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Zulkernine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rashno, E., Zulkernine, F. (2023). Efficient Video Captioning with Frame Similarity-Based Filtering. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14147. Springer, Cham. https://doi.org/10.1007/978-3-031-39821-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39821-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39820-9

  • Online ISBN: 978-3-031-39821-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics