Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Embedding Framework for Uncertain Attribute Graph

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2023)

Abstract

Graph data with uncertain connections between entities is commonly represented using uncertain graphs. This paper tackles the challenge of graph embedding within such uncertain attribute graphs. Current graph embedding techniques are typically oriented towards deterministic graphs, or uncertain graphs that lack attribute data. Furthermore, the majority of studies on uncertain graph learning simply adapt conventional algorithms for deterministic graphs to handle uncertainty, leading to compromised computational efficiency. To address these issues, we introduce an optimized embedding framework UAGE for uncertain attribute graphs. In UAGE, nodes are represented within a Gaussian distribution space to learn node attributes. We also propose a Probability Similarity Value (PSV) to manage relationship uncertainty and ensure that nodes with higher-order similar structures are located more closely in the latent space. Real-world dataset experiments confirm that UAGE surpasses contemporary methods in performance for downstream tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/tangjianpku/LINE.

  2. 2.

    https://github.com/tkipf/gae.

  3. 3.

    https://helios2.mi.parisdescartes.fr/~themisp/collectiveclassification/.

  4. 4.

    https://www.cs.cit.tum.de/daml/g2g/.

  5. 5.

    https://github.com/bhagya-hettige/GLACE.

References

  1. Banerjee, S.: A survey on mining and analysis of uncertain graphs. Knowl. Inf. Syst. 64, 1–37 (2022)

    Article  Google Scholar 

  2. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: unsupervised inductive learning via ranking. In: ICLR (2018)

    Google Scholar 

  3. Boldi, P., Bonchi, F., Gionis, A., Tassa, T.: Injecting uncertainty in graphs for identity obfuscation. arXiv preprint arXiv:1208.4145 (2012)

  4. Dallachiesa, M., Aggarwal, C., Palpanas, T.: Node classification in uncertain graphs. In: SSDBM (2014)

    Google Scholar 

  5. Danesh, M., Dorrigiv, M., Yaghmaee, F.: DGCU: a new deep directed method based on gaussian embedding for clustering uncertain graphs. Comput. Electr. Eng. 101, 108066 (2022)

    Article  Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  7. Halim, Z., Waqas, M., Hussain, S.F.: Clustering large probabilistic graphs using multi-population evolutionary algorithm. Inf. Sci. 317, 78–95 (2015)

    Article  Google Scholar 

  8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  9. Hettige, B., Li, Y.-F., Wang, W., Buntine, W.: Gaussian embedding of large-scale attributed graphs. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp. 134–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39469-1_11

    Chapter  Google Scholar 

  10. Hong, E.L., et al.: Gene ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res. 36(suppl_1), D577–D581 (2007)

    Google Scholar 

  11. Hu, J., Cheng, R., Huang, Z., Fang, Y., Luo, S.: On embedding uncertain graphs. In: CIKM, pp. 157–166 (2017)

    Google Scholar 

  12. Hussain, S.F., Maab, I.: Clustering probabilistic graphs using neighbourhood paths. Inf. Sci. 568, 216–238 (2021)

    Article  MathSciNet  Google Scholar 

  13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  14. Kollios, G., Potamias, M., Terzi, E.: Clustering large probabilistic graphs. TKDE 25(2), 325–336 (2011)

    Google Scholar 

  15. Kumar, S., Mallik, A., Khetarpal, A., Panda, B.: Influence maximization in social networks using graph embedding and graph neural network. Inf. Sci. 607, 1617–1636 (2022)

    Article  Google Scholar 

  16. Laurens, V.D.M., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    MATH  Google Scholar 

  17. Liang, Y., Hu, T., Zhao, P.: Efficient structural clustering in large uncertain graphs. In: ICDE, pp. 1966–1969 (2020)

    Google Scholar 

  18. Liu, H., Zhang, X., Zhang, X., Li, Q., Wu, X.M.: RPC: representative possible world based consistent clustering algorithm for uncertain data. Comput. Commun. 176, 128–137 (2021)

    Article  Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  20. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9(5), 471–472 (2012)

    Article  Google Scholar 

  21. Peng, H., et al.: Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578, 401–416 (2021)

    Article  MathSciNet  Google Scholar 

  22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  23. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: K-nearest neighbors in uncertain graphs. Proc. VLDB Endowment 3(1–2), 997–1008 (2010)

    Article  Google Scholar 

  24. Qiu, Y.X., et al.: Efficient structural clustering on probabilistic graphs. TKDE 31(10), 1954–1968 (2019)

    Google Scholar 

  25. Sun, G., Zhang, X.: A novel framework for node/edge attributed graph embedding. In: Advances in Knowledge Discovery and Data Mining, pp. 169–182 (2019)

    Google Scholar 

  26. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW (2015)

    Google Scholar 

  27. Vilnis, L., McCallum, A.: Word representations via gaussian embedding. arXiv preprint arXiv:1412.6623 (2014)

  28. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD, pp. 1225–1234 (2016)

    Google Scholar 

  29. Wang, X., Bo, D., Shi, C., Fan, S., Ye, Y., Yu, P.S.: A survey on heterogeneous graph embedding: methods, techniques, applications and sources. IEEE Trans. Big Data 1–1 (2022)

    Google Scholar 

  30. Xu, M.: Understanding graph embedding methods and their applications. SIAM Rev. 63(4), 825–853 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, W., Lin, X., Zhang, W., Pei, J., McCann, J.: Simrank*: effective and scalable pairwise similarity search based on graph topology. VLDB J. 28, 401–426 (2019)

    Article  Google Scholar 

  32. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in Wasserstein space. In: SIGKDD, pp. 2827–2836 (2018)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the support from the National Natural Science Foundation of China under Grant (No. 62172372), the Natural Science Foundation of Zhejiang Province, China (No. LZ21F030001, No. LQ22F020033), and the Exploratory Research project of Zhejiang Lab (No. 2022KG0AN01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, T., Yu, T., Qiao, X., Zhang, J. (2023). An Efficient Embedding Framework for Uncertain Attribute Graph. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14147. Springer, Cham. https://doi.org/10.1007/978-3-031-39821-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39821-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39820-9

  • Online ISBN: 978-3-031-39821-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics