Abstract
Service discovery is a vital process that enables low latency provisioning of Internet of Things (IoT) applications across the computing continuum. Unfortunately, it becomes increasingly difficult to identify a proper service within strict time constraints due to the high heterogeneity of the computing continuum. Moreover, the plethora of network technologies and protocols commonly used by IoT applications further hinders service discovery. To address these issues, we introduce a novel Mobile Edge Service Discovery using the DNS (MESDD) algorithm, which uses a so-called Intermediate Discovery Code to identify suitable service instances. MESDD uses geofences for fine-grained service segmentation based on a naming scheme that identifies users’ locations across the computing continuum. We deployed a real-life distributed computing continuum testbed and compared MESDD with three related methods, outperformed by 60 % after eight update iterations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., Hagen, S.: The GeoJSON Format, RFC 7946 (2016)
Cheshire, S., Krochmal, M.: RFC 6763: DNS-based service discovery (2013)
Dharanyadevi, P., et al.: Internet of things-based service discovery for the 5G-VANET Milieu. In: Cloud and IoT-Based Vehicular Ad Hoc Networks, pp. 31–45 (2021)
ETSI. Enhanced DNS support towards distributed MEC environment, WP, 39 (2020)
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data (New York, NY, USA), SIGMOD 1984. Associate for Computing Machinery, pp. 47–57 (1984)
Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 17–19 (2010)
Hasenburg, J., Bermbach, D.: DisGB: using geo-context information for efficient routing in geo-distributed pub/sub systems. In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing, pp. 67–78 (2020)
Heroux, B.: Geofence service (2023)
Horvath, K.: MESDD reference implementation (2023)
Horvath, K., Wöllik, H., Christoph, U., Egger, V.: Location-based service discovery for mobile-edge computing using DNS. In: Yang, X.S., Sherratt, S., Dey, N., Joshi, A. (eds.) Proceedings of Seventh International Congress on Information and Communication Technology. LNCS, vol. 447, pp. 379–388. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-1607-6_33
Hsu, K.J., Choncholas, J., Bhardwaj, K., Gavrilovska, A.: DNS does not suffice for MEC-CDN. In: Proceedings of the 19th ACM Workshop on Hot Topics in Networks, HotNets 2020, Association for Computing Machinery, pp. 212–218 (2020)
Jawade, B., Goyal, K.: Low computation in-device geofencing algorithm using hierarchy-based searching for offline usage. In: 2018 3rd International Conference on Inventive Computation Technologies, pp. 591–596. IEEE (2018)
Kimovski, D., Mehran, N., Kerth, C.E., Prodan, R.: Mobility-aware IoT applications placement in the cloud edge continuum. IEEE Trans. Serv. Comput. 15, 3358–3371 (2021)
Mastorakis, S., Mtibaa, A.: Towards service discovery and invocation in data-centric edge networks. In: 2019 IEEE 27th ICNP, pp. 1–6 (2019)
Mockapetris, P. : Domain names - concepts and facilities, RFC 1034 (1987)
Mumtaz, S., Huq, K.M.S., Rodriguez, J.: Direct mobile-to-mobile communication: paradigm for 5G. IEEE Wirel. Commun. 21(5), 14–23 (2014)
Murturi, I., Dustdar, S.: A decentralized approach for resource discovery using metadata replication in edge networks. IEEE Trans. Serv. Comput. 15, 2526–2537 (2021)
Namiot, D., Sneps-Sneppe, M.: Geofence and network proximity. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2013. LNCS, vol. 8121, pp. 117–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40316-3_11
Paliwal, A., Shafiq, B., Vaidya, J., Xiong, H., Adam, N.: Semantics-based automated service discovery. IEEE Trans. Serv. Comput. 5(2), 260–275 (2011)
Quevedo, J., Antunes, M., Corujo, D., Gomes, D., Aguiar, R.L.: On the application of contextual IoT service discovery in information centric networks. Comput. Commun. 89, 117–127 (2016)
Sabharwal, N., Pandey, S., Pandey, P.: Getting started with HashiCorp consul. In: Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul, pp. 167–199. Apress, Berkeley, CA (2021). https://doi.org/10.1007/978-1-4842-7129-2_7
Stolikj, M., Cuijpers, P., Lukkien, J., Buchina, N.: Context based service discovery in unmanaged networks using MDNS/DNS-SD. In: 2016 IEEE International Conference on Consumer Electronics (ICCE), pp. 163–165 (2016)
Tanganelli, G., Vallati, C., Mingozzi, E.: Edge-centric distributed discovery and access in the internet of things. IEEE IoT J. 5, 425–438 (2017)
Teranishi, Y., et al.: Demo abstract: LASK: a distributed service discovery platform on edge computing environments. In: 2019 IEEE 27th International Conference on Network Protocols (ICNP), pp. 1–2 (2019)
Xiao, N.: GIS algorithms. SAGE Advances in Geographic Information Science and Technology Series, SAGE Publications (2015)
Zhou, J., Abdullah, N.A., Shi, Z.: A hybrid P2P approach to service discovery in the cloud. Int. J. Inf. Technol. Comput. Sci. 3(1), 1–9 (2011)
Acknowledgement
This work received funding from the European Commission’s Horizon 2020 program (grant 101016835, DataCloud) and Austrian Research Promotion Agency (FFG) (grant 888098, Kärntner Fog).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Horvath, K., Kimovski, D., Uran, C., Wöllik, H., Prodan, R. (2023). MESDD: A Distributed Geofence-Based Discovery Method for the Computing Continuum. In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds) Euro-Par 2023: Parallel Processing. Euro-Par 2023. Lecture Notes in Computer Science, vol 14100. Springer, Cham. https://doi.org/10.1007/978-3-031-39698-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-39698-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39697-7
Online ISBN: 978-3-031-39698-4
eBook Packages: Computer ScienceComputer Science (R0)