Nothing Special   »   [go: up one dir, main page]

Skip to main content

Synthetic Nervous System Control of a Bioinspired Soft Grasper for Pick-and-Place Manipulation

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Manipulation of objects of variable size, shape and surface properties remains a challenging problem in robotics. In this paper, we present the design of a soft, pneumatically variable contact stiffness grasper and the training of a sparse, bioinspired neural network controller for pick-and-place manipulation. Both the soft grasper and the neural network controller are inspired by the sea slug Aplysia californica. The compliant nature of the grasper is beneficial for maintaining rich contact with objects, which simplifies the control problem. Adopting biologically inspired neural dynamics and network structure has the further advantage of building neural network controllers that are robust and efficient for real-time control. To verify the effectiveness of our bio-inspired approach for object grasping and manipulation, we developed a simulation environment that reflects the compliance between the soft grasper and the object. We demonstrate that when integrated with the neural network controller, the grasper successfully completed the pick-and-place task in simulation. With minimal tuning, the controller was then successfully transferred to the physical soft grasping platform and was able to successfully pick-and-place objects of various size and mass, up to a maximum tested mass of 706 g. The bio-inspired approach to both the morphology and the control of the soft-grasper presented here thus represents an exciting first step toward the robust adaptive manipulation of a broad class of objects.

This work was supported in part by the National Science Foundation (NSF) grant no. FRR-2138873 and by a GEM fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

R. Sukhnandan and Y. Li—These authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although we can achieve variable stiffness through active pressure control, we set the pressure applied to the soft jaws as a constant in this work. The regulation of the stiffness is treated as future work (see Sect. 4)

References

  1. Becker, K., et al.: Active entanglement enables stochastic, topological grasping. Proc. Natl. Acad. Sci. 119(42), e2209819119 (2022)

    Article  Google Scholar 

  2. Ciocarlie, M., Miller, A., Allen, P.: Grasp analysis using deformable fingers. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4122–4128, August 2005. ISSN: 2153-0866

    Google Scholar 

  3. Coulson, R., Stabile, C.J., Turner, K.T., Majidi, C.: Versatile soft robot gripper enabled by stiffness and adhesion tuning via thermoplastic composite. Soft Robot. 9(2), 189–200 (2022)

    Article  Google Scholar 

  4. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning (2016)

    Google Scholar 

  5. Dai, K., et al.: SLUGBOT, an \(Aplysia\)-inspired robotic grasper for studying control. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems. LNAI, vol. 13548, pp. 182–194. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_19

    Chapter  Google Scholar 

  6. Gill, J.P., Chiel, H.J.: Rapid adaptation to changing mechanical load by ordered recruitment of identified motor neurons. eNeuro 7(3) (2020). ENEURO.0016-20.2020

    Google Scholar 

  7. Hasani, R., Lechner, M., Amini, A., Rus, D., Grosu, R.: Liquid time-constant networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7657–7666 (2021)

    Google Scholar 

  8. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: A dynamic neural network designed using analytical methods produces dynamic control properties similar to an analogous classical controller. IEEE Control Syst. Lett. 3(2), 320–325 (2018)

    Article  Google Scholar 

  9. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11, 18 (2017)

    Article  Google Scholar 

  10. Hurwitz, I., Susswein, A.J.: Adaptation of feeding sequences in \(Aplysia\,oculifera\) to changes in the load and width of food. J. Exp. Biol. 166(1), 215–235 (1992)

    Article  Google Scholar 

  11. Jayakumar, S.M., et al.: Multiplicative interactions and where to find them. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020)

    Google Scholar 

  12. Jing, J., Weiss, K.R.: Neural mechanisms of motor program switching in \(Aplysia\). J. Neurosci. 21(18), 7349–7362 (2001)

    Article  Google Scholar 

  13. Jing, J., Weiss, K.R.: Generation of variants of a motor act in a modular and hierarchical motor network. Curr. Biol. 15(19), 1712–1721 (2005)

    Article  Google Scholar 

  14. Kehl, C.E., et al.: Soft-surface grasping: radular opening in \(Aplysia\, californica\). J. Exp. Biol. 222(16), jeb191254 (2019)

    Article  Google Scholar 

  15. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1998)

    Book  Google Scholar 

  16. Kuppuswamy, N., Alspach, A., Uttamchandani, A., Creasey, S., Ikeda, T., Tedrake, R.: Soft-bubble grippers for robust and perceptive manipulation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9917–9924 (2020)

    Google Scholar 

  17. Lechner, M., Hasani, R., Amini, A., Henzinger, T.A., Rus, D., Grosu, R.: Neural circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2(10), 642–652 (2020)

    Article  Google Scholar 

  18. Li, Y., Sukhnandan, R., Gill, J.P., Chiel, H.J., Webster-Wood, V., Quinn, R.D: A bioinspired synthetic nervous system controller for pick-and-place manipulation. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8047–8053 (2023)

    Google Scholar 

  19. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  20. Majidi, C.: Soft-matter engineering for soft robotics. Adv. Mater. Technol. 4(2), 1800477 (2019)

    Article  Google Scholar 

  21. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot. 32(1), 49–54 (2005)

    Article  Google Scholar 

  22. Nishimura, T., Suzuki, Y., Tsuji, T., Watanabe, T.: Fluid pressure monitoring-based strategy for delicate grasping of fragile objects by a robotic hand with fluid fingertips. Sensors 19(4), 782 (2019)

    Article  Google Scholar 

  23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  24. Peters, J., et al.: Actuation and stiffening in fluid-driven soft robots using low-melting-point material. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 4692–4698. IEEE, November 2019

    Google Scholar 

  25. Root, S.E., et al.: Bio-inspired design of soft mechanisms using a toroidal hydrostat. Cell Rep. Phys. Sci. 2(9), 100572 (2021)

    Article  Google Scholar 

  26. Roth, F.L., Driscoll, R.L., Holt, W.L.: Frictional properties of rubber. Rubber Chem. Technol. 16(1), 155–177 (1943). https://doi.org/10.5254/1.3540095

    Article  Google Scholar 

  27. Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018)

    Article  Google Scholar 

  28. Shintake, J., Schubert, B., Rosset, S., Shea, H., Floreano, D.: Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1097–1102, September 2015

    Google Scholar 

  29. Suh, H.T., Kuppuswamy, N., Pang, T., Mitiguy, P., Alspach, A., Tedrake, R.: SEED: series elastic end effectors in 6D for visuotactile tool use. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4684–4691 (2022)

    Google Scholar 

  30. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017). https://doi.org/10.1007/s00422-017-0711-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017)

    Article  Google Scholar 

  32. Szczecinski, N.S., Quinn, R.D.: Template for the neural control of directed stepping generalized to all legs of MantisBot. Bioinspiration Biomimetics 12(4), 045001 (2017)

    Article  Google Scholar 

  33. Wang, J., Chortos, A.: Control strategies for soft robot systems. Adv. Intell. Syst. 4(5), 2100165 (2022)

    Article  Google Scholar 

  34. Webster-wood, V.A., Gill, J.P., Thomas, P.J., Chiel, H.J.: Control for multifunctionality: bioinspired control based on feeding in \(Aplysia\,californica\). Biol. Cybern. 114(6), 557–588 (2020). https://doi.org/10.1007/s00422-020-00851-9

    Article  MATH  Google Scholar 

  35. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  36. Yoder, Z., Macari, D., Kleinwaks, G., Schmidt, I., Acome, E., Keplinger, C.: A soft, fast and versatile electrohydraulic gripper with capacitive object size detection. Adv. Funct. Mater. 33(3), 2209080 (2022)

    Article  Google Scholar 

  37. Zhang, B., Xie, Y., Zhou, J., Wang, K., Zhang, Z.: State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: a review. Comput. Electron. Agric. 177, 105694 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ashlee Liao, Saul Schaffer, and Avery Williamson for their helpful comments in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravesh Sukhnandan or Victoria A. Webster-Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sukhnandan, R. et al. (2023). Synthetic Nervous System Control of a Bioinspired Soft Grasper for Pick-and-Place Manipulation. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics