Nothing Special   »   [go: up one dir, main page]

Skip to main content

Revisiting Cycles of Pairing-Friendly Elliptic Curves

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14082))

Included in the following conference series:

Abstract

A recent area of interest in cryptography is recursive composition of proof systems. One of the approaches to make recursive composition efficient involves cycles of pairing-friendly elliptic curves of prime order. However, known constructions have very low embedding degrees. This entails large parameter sizes, which makes the overall system inefficient. In this paper, we explore 2-cycles composed of curves from families parameterized by polynomials, and show that such cycles do not exist unless a strong condition holds. As a consequence, we prove that no 2-cycles can arise from the known families, except for those cycles already known. Additionally, we show some general properties about cycles, and provide a detailed computation on the density of pairing-friendly cycles among all cycles.

Authors are listed in alphabetical order (https://www.ams.org/profession/leaders/CultureStatement04.pdf).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other works take \(|d |\) as the discriminant.

  2. 2.

    Furthermore, numerical experiments easily find many tuples (tpq) with low degree and small coefficients satisfying conditions 1–4, but unfortunately not condition 5.

  3. 3.

    In [3], the authors define pairing friendliness as having an embedding degree \(k \le (\log q)^2\). We will keep the bound as an unspecified parameter K.

References

  1. SageMath code from Appendix C. GitHub repository (2022). https://github.com/pairingfriendlycycles/pairing-friendly-cycles/tree/main

  2. Aranha, D.F., Housni, Y.E., Guillevic, A.: A survey of elliptic curves for proof systems. Cryptology ePrint Archive, Paper 2022/586 (2022)

    Google Scholar 

  3. Balasubramanian, R., Koblitz, N.: The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. J. Cryptol. 11(2), 141–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19

    Chapter  Google Scholar 

  5. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22

    Chapter  Google Scholar 

  6. Beckenbach, E.F., Bellman, R.: Inequalities (1961)

    Google Scholar 

  7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. Algorithmica 79(4), 1102–1160 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 326–349 (2012)

    Google Scholar 

  9. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: recursive zk-SNARKs from any additive polynomial commitment scheme. Cryptology ePrint Archive (2020)

    Google Scholar 

  10. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Mina: decentralized cryptocurrency at scale. New York Univ. O(1) Labs, New York, NY, USA, Whitepaper, pp. 1–47 (2020)

    Google Scholar 

  11. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup. Cryptology ePrint Archive (2019)

    Google Scholar 

  12. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without succinct arguments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 681–710. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_24

    Chapter  Google Scholar 

  13. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumulation schemes. Cryptology ePrint Archive (2020)

    Google Scholar 

  14. Cahen, P.J., Chabert, J.L.: What you should know about integer-valued polynomials. Am. Math. Mon. 123(4), 311–337 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves. SIAM J. Appl. Algebra Geometry 3(2), 175–192 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: ICS, vol. 10, pp. 310–331 (2010)

    Google Scholar 

  17. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 371–403. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_13

    Chapter  MATH  Google Scholar 

  18. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, pp. 253–270 (2015). https://doi.org/10.1109/SP.2015.23

  19. Cox, D.A.: Primes of the Form \(x^2 + ny^2\): Fermat, Class Field Theory, and Complex Multiplication. Wiley, Hoboken (1989)

    Google Scholar 

  20. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 367–396. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_13

  21. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 452–465. Springer, Heidelberg (2006). https://doi.org/10.1007/11792086_32

    Chapter  Google Scholar 

  22. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree 10 (2006). https://theory.stanford.edu/dfreeman/talks/ants.pdf, presentation slides from ANTS-VII

  23. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frey, G., Rück, H.G.: A remark concerning \(m\)-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comput. 62(206), 865–874 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PlonK: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019)

    Google Scholar 

  26. Galbraith, S.D., McKee, J.F., Valença, P.C.: Ordinary abelian varieties having small embedding degree. Finite Fields Appl. 13(4), 800–814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  28. Karabina, K., Teske, E.: On prime-order elliptic curves with embedding degrees k = 3, 4, and 6. In: van der Poorten, A.J., Stein, A. (eds.) ANTS 2008. LNCS, vol. 5011, pp. 102–117. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79456-1_6

    Chapter  Google Scholar 

  29. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  30. Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with fairness guarantees. Cryptology ePrint Archive (2020)

    Google Scholar 

  31. Koblitz, N.: Elliptic curve implementation of zero-knowledge blobs. J. Cryptol. 4(3), 207–213 (1991). https://doi.org/10.1007/BF00196728

    Article  MathSciNet  MATH  Google Scholar 

  32. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. (2) 126(3), 649–673 (1987)

    Google Scholar 

  33. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Information Theory 39(5), 1639–1646 (1993)

    Google Scholar 

  34. Migotti, A.: Zur Theorie der Kreisteilungsgleichung. B. der Math.-Naturwiss, Classe der Kaiserlichen Akademie der Wissenschaften, Wien 87, 7–14 (1883)

    Google Scholar 

  35. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 84(5), 1234–1243 (2001)

    MATH  Google Scholar 

  36. Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20(2), 119–134 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Naveh, A., Tromer, E.: PhotoProof: cryptographic image authentication for any set of permissible transformations. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 255–271. IEEE (2016)

    Google Scholar 

  38. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly Practical Verifiable Computation, vol. 59, pp. 238–252 (2013). https://doi.org/10.1109/SP.2013.47

  39. Pegg, E.J.: Bouniakowsky conjecture. MathWorld-A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/BouniakowskyConjecture.html

  40. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6

    Book  MATH  Google Scholar 

  41. Silverman, J.H., Stange, K.E.: Amicable pairs and aliquot cycles for elliptic curves. Exp. Math. 20(3), 329–357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one. J. Cryptol. 12, 193–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sutherland, A.V.: Accelerating the CM method. LMS J. Comput. Math. 15, 172–204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by Dusk Network and the Spanish grant PID2019-110224RB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Silva .

Editor information

Editors and Affiliations

Appendices

A Polynomial Division

In this section, we show that \(p(X)^\ell \bmod {q(X)}\) is an integer-valued polynomial, when \(E \leftrightarrow (t, p, q)\) are either the MNT3 or BN curves. This is completely analogous to the argument in Remark 4.6.

MNT3 Curves. In this case, \(q(X) = 12X^2 - 1\). We proceed by induction on \(\ell \). For \(\ell = 1\), we have that

$$\begin{aligned} p(X) \bmod {q(X)} = -6X + 2, \end{aligned}$$

which is of the form \(6aX + b\), for some \(a, b\in \mathbb {Z}\). We show that, if \(p^\ell \bmod q\) is of this form, then so is \(p^{\ell +1}\bmod {q}\). Then all the remainders will actually be in \(\mathbb {Z}[X]\).

Assume that there exist \(a, b, c, d \in \mathbb {N}\) such that

$$\begin{aligned} p(X)^\ell \bmod {q(X)} = 6aX + b. \end{aligned}$$

Then

$$\begin{array}{rcl} p(X)^{\ell +1} &{} \equiv &{} p(X)^\ell p(X) \equiv \left( 6aX + b\right) \left( -6X + 2\right) \\ &{} \equiv &{} -36aX^2 + (12a - 6b)X + 2b\\ &{} \equiv &{} (12a - 6b) X + (-3a + 2b) \pmod {q(X)}. \end{array}$$

Since the coefficient of degree 1 is divisible by 6, the induction step works.

BN Curves. In this case, \(q(X) = 36X^4 + 36X^3 + 24X^2 + 6X + 1\). Assume that there exist \(a, b, c, d \in \mathbb {N}\) such that

$$\begin{aligned} p(X)^\ell \bmod {q(X)} = 36aX^3 + 6bX^2 + 6cX + d, \end{aligned}$$

for some \(a, b, c, d\in \mathbb {Z}\). Then

$$\begin{array}{rcl} p(X)^{\ell +1} &{} \equiv &{} p(X)^\ell p(X) \equiv \left( 36aX^3 + 6bX^2 + 6cX + d\right) \left( -6X^2\right) \\ &{} \equiv &{} -216aX^5 - 36b X^4 - -36c X^3 - 6d X^2\\ &{} \equiv &{} (-72a + 36b - 36c) X^3 + (-108a + 24b - 6d) X^2 \\ &{}&{} + (-30a + 6b) X + (-6a + b) \pmod {q(X)}. \end{array}$$

Since the coefficient of degree 3 is divisible by 36, and the coefficients of degree 2 and 1 are divisible by 6, the induction step works.

B Tables

Table 3. Bounds \(N_{\textsf{left}}, N_{\textsf{right}}\) from Lemma 4.4 for different embedding degrees \(\ell \) of the potential partner curve of MNT3, Freeman, and BN curves. The remaining intermediate values of \(\ell \) are covered by Corollaries 4.2 and 4.3 for MNT3 and Freeman curves, respectively.

C SageMath Code

This code is available at [1].

Setup

MNT3() , MNT4() , MNT6() , Freeman() , BN()

These functions return the set of polynomials that define the families of curves MNT3, MNT4, MNT6, Freeman, and BN, respectively.

The expected outputs are:

  • t: polynomial \(t(X)\in \mathbb {Q}[X]\) that parameterizes the trace.

  • p: polynomial \(p(X)\in \mathbb {Q}[X]\) that parameterizes the order of the curves.

  • q: polynomial \(q(X)\in \mathbb {Q}[X]\) that parameterizes the order of the finite field over which the curve is defined.

figure a

Code for Proposition 4.1

candidate_embedding_degrees(Family, K_low, K_high)

Given a family of curves, this function computes the possible embedding degrees of curves that may form 2-cycles with a curve of the given family.

The expected inputs are:

  • Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-friendly elliptic curves with prime order.

  • K_low, K_high: lower and upper bounds on the embedding degree to look for.

The expected outputs are:

  • embedding_degrees: a list of potential embedding degrees k such that \(\texttt {K\_low} \le k \le \texttt {K\_high}\) and a curve from the family might form a cycle with a curve with embedding degree k.

  • modular_conditions: conditions on \(x\bmod {k}\) for each of these k.

figure b

Auxiliary functions

is_integer_valued(g)

This function checks whether a given polynomial g is integer-valued. It returns True if so, and False otherwise. The test is based on the fact that a polynomial \(g\in \mathbb {Q}[X]\) is integer-valued if and only if \(g(x)\in \mathbb {Z}\) for \(\textrm{deg}\,g + 1\) consecutive \(x\in \mathbb {Z}\) [14, Corollary 2].

figure c

find_relevant_root(w, b, side)

This function finds the left-most or right-most root of a polynomial \(b(X)\in \mathbb {Q}[X]\).

The expected inputs are:

  • w: positive integer.

  • b: polynomial \(b(X)\in \mathbb {Q}[X]\).

  • side: this parameter specifies which root to keep. If side = -1, then the function takes the left-most root, and if side = 1, it returns the right-most root.

The expected output is the relevant extremal root.

figure d

check_embedding_degree(px, qx, k)

This function determines whether k is the smallest positive integer such that \((\texttt {px}^k - 1) \pmod {\texttt {qx}} = 1\), and outputs \(\texttt {True/False}\).

figure e

Code for Table 3

compute_bounds(a, b)

This function computes the bounds \(N_{\textsf{left}}, N_{\textsf{right}}\) of Lemma 4.4. This function has been used to produce the results of tables from Table 3. It uses the auxiliary functions from Appendix C.

The expected inputs are:

  • a, b: two integer-valued polynomials in \(\mathbb {Q}[X]\).

The expected outputs are:

  • N_left, N_right: integer bounds \(N_{\textsf{left}}, N_{\textsf{right}}\) described in Lemma 4.4.

figure f

Code for Corollary 4.8

exhaustive_search(Family, k, N_left, N_right, mod_cond)

This function performs the exhaustive search from Corollary 4.8 within the intervals \([N_{\textsf{left}}, N_{\textsf{right}}]\).

The expected inputs are:

  • Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-friendly elliptic curves with prime order.

  • k: an embedding degree.

  • N_left, N_right: upper and lower integer bounds.

  • mod_cond: conditions on \(x\bmod {\texttt {k}}\) for every x in the interval \([\texttt {N\_left, N\_right}]\).

The expected output is:

  • curves: a list of curve descriptions (xkt(x), p(x), q(x)) such that \(x\in [\texttt {N\_left, N\_right}]\), and the curve parameterized by (t(x), p(x), q(x)) forms a cycle with a curve with embedding degree k.

figure g

1.1 Main function

search_for_cycles(Family, K_low, K_high)

This function looks for 2-cycles formed by a curve belonging to a given parameterized family of curves and a prime-order curve with an embedding degree between two given bounds.

The expected inputs are:

  • Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-friendly elliptic curves with prime order.

  • K_low, K_high: integer lower and upper bounds on the embedding degree to look for.

The function prints to a file all 2-cycles involving a curve from the family and a prime-order curve with embedding degree \(\texttt {K\_low} \le k \le \texttt {K\_high}\).

figure h

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellés-Muñoz, M., Jiménez Urroz, J., Silva, J. (2023). Revisiting Cycles of Pairing-Friendly Elliptic Curves. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14082. Springer, Cham. https://doi.org/10.1007/978-3-031-38545-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38545-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38544-5

  • Online ISBN: 978-3-031-38545-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics