Abstract
This paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost and EBM consistently outperform the other models. An analysis of patient subsets based on their pregnancy history was also conducted, revealing that the group of patients in their first pregnancy achieved the highest prediction accuracy. Additionally, the study explored the efficacy of risk prediction based on various parameters and found that the results vary depending on the models used and the degree of class balance in the database. Finally, an additional test was performed on the dataset annotated by physicians.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Duley, L.: The global impact of pre-eclampsia and eclampsia. In: Seminars in Perinatology, vol. 33, no. 3, pp. 130–137. WB Saunders (2009)
Abalos, E., Cuesta, C., Grosso, A.L., Chou, D., Say, L.: Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 170(1), 1–7 (2013)
Harmon, Q.E., Huang, L., Umbach, D.M., Klungsøyr, K., Engel, S.M., Magnus, P., Skjærven, R., Zhang, J., Wilcox, A.J.: Risk of fetal death with preeclampsia. Obstet. Gynecol. 125(3), 628–635 (2015)
Groot, M., Hofmeyr, C.J., Thangaratinam, S., Magee, L.A., de Groot, C.J.M., Hofmeyr, G.J.: Pre-eclampsia. Lancet 387, 999–1011 (2016)
MouliSaha, M., Mukhyopadhyay, M., Bhattacharyya, M.: A study on maternal and fetal cell free DNA (cffDNA) for predicting the adverse pregnancy outcomes (2022)
Poon, L.C., Magee, L.A., Verlohren, S., Nicolaides, K.H., Shennan, A., von Dadelszen, P., et al.: A literature review and best practice advice for second and third trimester risk stratification, monitoring, and management of pre-eclampsia. Int. J. Gynecol. Obstet. 154(S1), 3–31 (2021)
Stevens, W., Shih, T., Incerti, D., Ton, T.G., Lee, H.C., Peneva, D., Macones, G.A., Sibai, B.M., Jena, A.B.: Short-term costs of preeclampsia to the United States health care system. Am. J. Obstet. Gynecol. 217(3), 237–248 (2017)
Knight, M., Bunch, K., Patel, R., Shakespeare, J., Kotnis, R., Kenyon, S., Kurinczuk, J.J.: On behalf of MBRRACE-UK. Saving lives, improving mothers’ care core report-lessons learned to inform maternity care from the UK and Ireland confidential enquiries into maternal deaths and morbidity 2018–20 (2022)
Rolnik, D.L., Wright, D., Poon, L.C., et al.: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377(7), 613–622 (2017)
Van Doorn, R., Mukhtarova, N., Flyke, I.P., Lasarev, M., Kim, K., Hennekens, C.H., et al.: Dose of aspirin to prevent preterm preeclampsia in women with moderate or high-risk factors: a systematic review and meta-analysis. PLOS One 16(3) (2021)
Bujold, E., Roberge, S., Lacasse, Y., et al.: Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet. Gynecol. 116(2), 402–414 (2010)
Roberge, S., Villa, P., Nicolaides, K., et al.: Early administration of low-dose aspirin for the prevention of preterm and term preeclampsia: a systematic review and meta-analysis. Fetal Diagn Ther 31(3), 141–146 (2012)
Bujold, E., Roberge, S., Nicolaides, K.H.: Low-dose aspirin for prevention of adverse outcomes related to abnormal placentation. Prenat. Diagn. 34(7), 642–648 (2014)
Norwitz, E., Bellussi, F.: Early pregnancy prediction of preeclampsia. UpToDate (2018)
Han, L., Holland, O.J., Da Silva Costa, F., Perkins, A.V.: Potential biomarkers for late-onset and term preeclampsia: a scoping review. Front. Physiol. 14, 338 (2023)
LeFevre, M.L., US Preventive Services Task Force: Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 161(11), 819–826 (2014)
ACOG Committee Opinion No: 743: low-dose aspirin use during pregnancy. Obstet Gynecol 132(1), e44–e52 (2018)
Bartsch, E., Medcalf, K.E., Park, A.L.: Clinical risk factors for preeclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 353, i1753 (2016)
The Fetal Medicine Foundation, Risk assessment, Risk for preeclampsia. https://fetalmedicine.org/research/assess/preeclampsia/First
Poon, L.C., Nicolaides, K.H.: Early prediction of preeclampsia. Obstet Gynecol Int. 2014, 297397 (2014)
O’Gorman, N., Wright, D., Syngelaki, A., Akolekar, R., Wright, A., Poon, L.C., Nicolaides, K.H.: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 214(1), 103-e1 (2016)
Suksai, M., Geater, A., Phumsiripaiboon, P., Suntharasaj, T.: A new risk score model to predict preeclampsia using maternal factors and mean arterial pressure in early pregnancy. J. Obstet. Gynaecol. 42(3), 437–442 (2022)
Martínez-Velasco, A., Martinez-Villaseñor, L., Miralles-Pechuán, L.: Machine learning approach for pre-eclampsia risk factors association. In: Proceedings of the 4th EAI International Conference on Smart Objects and Technologies for Social Good, pp. 232–237 (2018)
Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.W., Kwon, J.Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), e0221202 (2019)
Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. PLoS One 17(4), e0266042 (2022)
Marić, I., Tsur, A., Aghaeepour, N., Montanari, A., Stevenson, D.K., Shaw, G.M., Winn, V.D.: Early prediction of preeclampsia via machine learning. Am. J. Obstet. Gynecol. MFM 2(2), 100100 (2020)
Cuenca, D., Rolle, V., de Paco Matallana, K., Valiño, N., Revello, R., Adiego, B., Mendoza, M., Santacruz, B., del Mar Gil, M.: Risk factors for preeclampsia: results from a cohort of over 5000 pregnancies in Spain. Matern.-Fetal Med. 3(02), 100–106 (2021)
de Freitas Leite, J., Lobo, G.A.R., Nowak, P.M., Antunes, I.R., Júnior, E.A., da Silva Pares, D.B.: Prediction of preeclampsia in the first trimester of pregnancy using maternal characteristics, mean arterial pressure, and uterine artery Doppler data in a Brazilian population. Obstet. Gynecol. Sci. 62(6), 391–396 (2019)
Riishede, I., Rode, L., Sperling, L., Overgaard, M., Ravn, J.D., Sandager, P., Skov, H., Wagner, S.R., Nørgaard, P., Clausen, T.D., Juel Jensen, C.A., Pihl, K., Jørgensen, F.S., Munk, J.K., Zingenberg, H.J., Pedersen, N.G., Andersen, M.R., Wright, A., Wright, D., Tabor, A., Ekelund, C.K.: Pre-eclampsia screening in Denmark (PRESIDE): national validation study. Ultrasound Obstet. Gynecol. (2023)
Tan, M.Y., Syngelaki, A., Poon, L.C., Rolnik, D.L., O’Gorman, N., Delgado, J.L., Akolekar, R., Konstantinidou, L., Tsavdaridou, M., Galeva, S., Ajdacka, U., Molina, F.S., Persico, N., Jani, J.C., Plasencia, W., Greco, E., Papaioannou, G., Wright, A., Wright, D., Nicolaides, K.H.: Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 52(2), 186–195 (2018)
Tianqi, C., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, pp. 785–794. ACM (2016)
Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD, pp. 623–631 (2013)
Acknowledgements
This work has been partially supported by IFD, NCBR, and UEFISCDI in the framework of the ERA PerMed, project WODIA—Personalized Medicine Screening and Monitoring Programme for Pregnant Women Suffering from Preeclampsia and Gestational Hypertension.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mazur-Milecka, M. et al. (2024). Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data. In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. (eds) The Latest Developments and Challenges in Biomedical Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-031-38430-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-38430-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38429-5
Online ISBN: 978-3-031-38430-1
eBook Packages: EngineeringEngineering (R0)