Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nonholonomic Brackets: Eden Revisited

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Abstract

The nonholonomic dynamics can be described by the so-called nonholonomic bracket in the constrained submanifold, which is a non-integrable modification of the Poisson bracket of the ambient space, in this case, of the canonical bracket in the cotangent bundle of the configuration manifold. This bracket was defined in [2, 10], although there was already some particular and less direct definition. On the other hand, another bracket, also called noholonomic, was defined using the description of the problem in terms of skew-symmetric algebroids. Recently, reviewing two older papers by R. J. Eden, we have defined a new bracket which we call Eden bracket. In the present paper, we prove that these three brackets coincide. Moreover, the description of the nonholonomic bracket à la Eden has allowed us to make important advances in the study of Hamilton-Jacobi theory and the quantization of nonholonomic systems.

M. de León, M. Lainz and A. López-Gordón—Acknowledge financial support from Grants PID2019-106715GB-C21 and CEX2019-000904-S funded by MCIN/AEI/ 10.13039/501100011033. Asier López-Gordón—would also like to thank MCIN for the predoctoral contract PRE2020-093814. J. C. Marrero—Ackowledges financial support from the Spanish Ministry of Science and Innovation and European Union (Feder) Grant PGC2018-098265-B-C32.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates, L., Sniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32, 99–115 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cantrijn, F., de León, M., de Diego, D.M.: On almost-Poisson structures in nonholonomic mechanics. Nonlinearity. 12(3), 721–737 (1999)

    Google Scholar 

  3. Cantrijn, F., de León, M., Marrero, J.C., de Diego, D.M.: On almost-Poisson structures in nonholonomic mechanics II. The time-dependent framework. Nonlinearity. 13(4), 1379–1409 (2000)

    Google Scholar 

  4. de León, M., Martín de Diego, D.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37(7), 3389–3414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. de León, M., Marrero, J.C., de Diego, D.M.: Linear almost Poisson structures and Hamilton-Jacobi equation. Appl. Nonholon. Mech. J. Geom. Mech. 2(2), 159–198 (2010)

    MATH  Google Scholar 

  6. de León, M., Rodrigues, P.R.: Methods of differential geometry in analytical mechanics. North-Holland Mathematics Studies, 158. North-Holland Publishing Co., pp. x+483. Amsterdam (1989). ISBN: 0-444-88017-8

    Google Scholar 

  7. Eden, R.J.: The Hamiltonian dynamics of non-holonomic systems. Proc. Roy. Soc. London Ser. A 205, 564–583 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eden, R.J.: The quantum mechanics of non-holonomic systems. Proc. Roy. Soc. London Ser. A 205, 583–595 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabowski, J., de León, M., Marrero, J.C., de Diego, D.M.: Nonholonomic constraints: a new viewpoint. J. Math. Phys. 50(1), 17, 013520 (2009)

    Google Scholar 

  10. Ibort, A., de Leon, M., Marrero, J.C., de Diego, D.M.: Dirac brackets in constrained dynamics. Fortschr. Phys. 47(5), 459–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34, 225–33 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel de León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de León, M., Lainz, M., López-Gordón, A., Marrero, J.C. (2023). Nonholonomic Brackets: Eden Revisited. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14072. Springer, Cham. https://doi.org/10.1007/978-3-031-38299-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38299-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38298-7

  • Online ISBN: 978-3-031-38299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics