Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

In this paper, we propose a strategy to train a CNN to detect document manipulations in JPEG documents under data scarcity scenario. As it comes to scanned PDF documents, it is common that the document consists of a JPEG image encapsulated into a PDF. Indeed, if the document before tampering was a JPEG image, its manipulation will lead to double compression artefacts within the resulting tampered JPEG image. In contrast to related methods that are based on handcrafted histograms of DCT coefficients, we propose a double compression detection method using a one-hot encoding of the DCT coefficients of JPEG images. We can use accordingly a CNN model to compute co-occurrence matrices and avoid handcrafted features such as histograms. Using simulated frauds on Perlin noise, we train our network and then test it on textual images against a state-of-the-art CNN algorithm trained on natural images. Our approach has shown an encouraging generalization on both the database used in the paper and on a stream of synthetic frauds on real documents used in the company Yooz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Perlin noise is a procedural texture primitive, it is a gradient noise used to improve the realism of the CGI.

References

  1. Artaud, C., Sidère, N., Doucet, A., Ogier, J.M., Yooz, V.P.D.: Find it! fraud detection contest report. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 13–18. IEEE (2018)

    Google Scholar 

  2. Bae, H.J., et al.: A Perlin noise-based augmentation strategy for deep learning with small data samples of HRCT images. Sci. Rep. 8(1), 1–7 (2018)

    Article  Google Scholar 

  3. Barni, M., et al.: Aligned and non-aligned double jpeg detection using convolutional neural networks. J. Vis. Commun. Image Represent. 49, 153–163 (2017)

    Article  Google Scholar 

  4. Bianchi, T., Piva, A.: Analysis of non-aligned double jpeg artifacts for the localization of image forgeries. In: 2011 IEEE International Workshop on Information Forensics and Security, pp. 1–6. IEEE (2011)

    Google Scholar 

  5. Chen, Y.L., Hsu, C.T.: Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection. IEEE Trans. Inf. Forensics Secur. 6(2), 396–406 (2011)

    Article  Google Scholar 

  6. Farid, H.: Exposing digital forgeries from JPEG ghosts. IEEE Trans. Inf. Forensics Secur. 4(1), 154–160 (2009)

    Article  MathSciNet  Google Scholar 

  7. Fu, D., Shi, Y.Q., Su, W.: A generalized Bedford’s law for JPEG coefficients and its applications in image forensics. In: Security, Steganography, and Watermarking of Multimedia Contents IX. vol. 6505, p. 65051L. International Society for Optics and Photonics (2007)

    Google Scholar 

  8. Huang, J.: Segmentation-based hybrid compression scheme for scanned documents (May 20 2008), US Patent 7,376,265

    Google Scholar 

  9. Khermaza, E., Tkachenko, I., Picard, J.: Can copy detection patterns be copied? evaluating the performance of attacks and highlighting the role of the detector. In: 2021 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2021)

    Google Scholar 

  10. Kwon, M.J., Yu, I.J., Nam, S.H., Lee, H.K.: Cat-net: Compression artifact tracing network for detection and localization of image splicing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 375–384 (2021)

    Google Scholar 

  11. Li, B., Shi, Y.Q., Huang, J.: Detecting doubly compressed jpeg images by using mode based first digit features. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 730–735. IEEE (2008)

    Google Scholar 

  12. Lin, Z., He, J., Tang, X., Tang, C.K.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)

    Article  MATH  Google Scholar 

  13. Park, J., Cho, D., Ahn, W., Lee, H.-K.: Double JPEG detection in mixed JPEG quality factors using deep convolutional neural network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 656–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_39

    Chapter  Google Scholar 

  14. Popescu, A.C., Farid, H.: Statistical tools for digital forensics. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30114-1_10

    Chapter  Google Scholar 

  15. van Renesse, R.L.: Paper based document security-a review. In: European Conference on Security and Detection, 1997. ECOS 1997, pp. 75–80. IET (1997)

    Google Scholar 

  16. Umesh, P.: Image processing in python. CSI Commun. 23, 1–25 (2012)

    Google Scholar 

  17. Wang, Q., Zhang, R.: Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur. 2016(1), 1–12 (2016)

    Google Scholar 

  18. Wu, L., et al.: Editing text in the wild. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1500–1508 (2019)

    Google Scholar 

  19. Yousfi, Y., Fridrich, J.: An intriguing struggle of CNNs in JPEG steganalysis and the onehot solution. IEEE Signal Process. Lett. 27, 830–834 (2020)

    Article  Google Scholar 

  20. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  21. Yu, I.J., Nam, S.H., Ahn, W., Kwon, M.J., Lee, H.K.: Manipulation classification for JPEG images using multi-domain features. IEEE Access 8, 210837–210854 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Region Nouvelle Aquitaine under the grant number 2019-1R50120 (CRASD project) and AAPR2020-2019-8496610 (CRASD2 project) and by the LabCom IDEAS under the grant number ANR-18-LCV3-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théo Taburet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taburet, T. et al. (2023). Document Forgery Detection in the Context of Double JPEG Compression. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13646. Springer, Cham. https://doi.org/10.1007/978-3-031-37745-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37745-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37744-0

  • Online ISBN: 978-3-031-37745-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics