Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13643))

Included in the following conference series:

Abstract

3D eye gaze estimation has emerged as an interesting and challenging task in recent years. As an attractive alternative to appearance-based models, 3D model-based gaze estimation methods are powerful because a general prior of eye anatomy or geometry has been integrated into the 3D model hence they adapt well under various head poses and illumination conditions. We present a method for constructing an anatomically accurate 3D deformable eye model from the IR images of eyes and demonstrate its application to 3D gaze estimation. The 3D eye model consists of a deformable basis capable of representing individual real-world eyeballs, corneas, irises and kappa angles. To validate the model’s accuracy, we combine it with a 3D face model (without eyeball) and perform image-based fitting to obtain eye basis coefficients The fitted eyeball is then used to compute 3D gaze direction. Evaluation results on multiple datasets show that the proposed method generalizes well across datasets and is robust under various head poses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bas, A., Smith, W.A.: What does 2D geometric information really tell us about 3D face shape? Int. J. Comput. Vis. 127(10), 1455–1473 (2019)

    Article  Google Scholar 

  2. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: International Conference on Computer Vision (2017)

    Google Scholar 

  3. Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: Facewarehouse: a 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20(3), 413–425 (2013)

    Google Scholar 

  4. Chen, J., Tong, Y., Gray, W., Ji, Q.: A robust 3D eye gaze tracking system using noise reduction. In: Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, pp. 189–196 (2008)

    Google Scholar 

  5. Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_41

    Chapter  Google Scholar 

  6. Cheng, Y., Huang, S., Wang, F., Qian, C., Lu, F.: A coarse-to-fine adaptive network for appearance-based gaze estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10623–10630 (2020)

    Google Scholar 

  7. Fuhl, W.: From perception to action using observed actions to learn gestures. User Model. User-Adapt. Interact. 31(1), 105–120 (2021)

    Article  Google Scholar 

  8. Fuhl, W., Santini, T., Kasneci, E.: Fast camera focus estimation for gaze-based focus control. arXiv preprint arXiv:1711.03306 (2017)

  9. Fuhl, W., et al.: Non-intrusive practitioner pupil detection for unmodified microscope oculars. Comput. Biol. Med. 79, 36–44 (2016)

    Article  Google Scholar 

  10. Funes Mora, K.A., Monay, F., Odobez, J.M.: Eyediap: a database for the development and evaluation of gaze estimation algorithms from RGB and RGB-d cameras. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 255–258 (2014)

    Google Scholar 

  11. Gerig, T., et al.: Morphable face models-an open framework. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 75–82. IEEE (2018)

    Google Scholar 

  12. Glass2, T.P.: Tobii pro eye tracker data quality report (2017). https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-glasses-2-accuracy-and-precision-test-report.pdf

  13. Hennessey, C., Noureddin, B., Lawrence, P.: A single camera eye-gaze tracking system with free head motion. In: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, pp. 87–94 (2006)

    Google Scholar 

  14. Hutchinson, T.E., White, K.P., Martin, W.N., Reichert, K.C., Frey, L.A.: Human-computer interaction using eye-gaze input. IEEE Trans. Syst. Man Cybernet. 19(6), 1527–1534 (1989)

    Article  Google Scholar 

  15. Kohlbecher, S., Bardinst, S., Bartl, K., Schneider, E., Poitschke, T., Ablassmeier, M.: Calibration-free eye tracking by reconstruction of the pupil ellipse in 3d space. In: Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, pp. 135–138 (2008)

    Google Scholar 

  16. Lai, C.C., Shih, S.W., Hung, Y.P.: Hybrid method for 3-D gaze tracking using glint and contour features. IEEE Trans. Circ. Syst. Video Technol. 25(1), 24–37 (2014)

    Article  Google Scholar 

  17. Li, R., et al.: Learning formation of physically-based face attributes (2020)

    Google Scholar 

  18. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 36(6), 1–17 (2017)

    Google Scholar 

  19. Liu, Y., Liu, R., Wang, H., Lu, F.: Generalizing gaze estimation with outlier-guided collaborative adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3835–3844 (2021)

    Google Scholar 

  20. Lugaresi, C., et al.: Mediapipe: a framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019)

  21. Palmero, C., Selva, J., Bagheri, M.A., Escalera, S.: Recurrent CNN for 3D gaze estimation using appearance and shape cues. arXiv preprint arXiv:1805.03064 (2018)

  22. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301. IEEE (2009)

    Google Scholar 

  23. Ploumpis, S., et al.: Towards a complete 3D morphable model of the human head. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4142–4160 (2020)

    Article  Google Scholar 

  24. Smith, B.A., Yin, Q., Feiner, S.K., Nayar, S.K.: Gaze locking: passive eye contact detection for human-object interaction. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 271–280 (2013)

    Google Scholar 

  25. Song, G., Cai, J., Cham, T.J., Zheng, J., Zhang, J., Fuchs, H.: Real-time 3D face-eye performance capture of a person wearing VR headset. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 923–931 (2018)

    Google Scholar 

  26. Swirski, L., Dodgson, N.: A fully-automatic, temporal approach to single camera, glint-free 3D eye model fitting. In: Proceeding of the PETMEI, pp. 1–11 (2013)

    Google Scholar 

  27. Tsukada, A., Kanade, T.: Automatic acquisition of a 3D eye model for a wearable first-person vision device. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 213–216 (2012)

    Google Scholar 

  28. Vicente, F., Huang, Z., Xiong, X., De la Torre, F., Zhang, W., Levi, D.: Driver gaze tracking and eyes off the road detection system. IEEE Trans. Intell. Transp. Syst. 16(4), 2014–2027 (2015)

    Article  Google Scholar 

  29. Wang, K., Ji, Q.: Real time eye gaze tracking with kinect. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2752–2757. IEEE (2016)

    Google Scholar 

  30. Wang, K., Ji, Q.: Real time eye gaze tracking with 3D deformable eye-face model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1003–1011 (2017)

    Google Scholar 

  31. Wang, Y., et al.: Contrastive regression for domain adaptation on gaze estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19376–19385 (2022)

    Google Scholar 

  32. Wood, E., Baltrušaitis, T., Morency, L.-P., Robinson, P., Bulling, A.: A 3D morphable eye region model for gaze estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 297–313. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_18

    Chapter  Google Scholar 

  33. Xiong, X., Liu, Z., Cai, Q., Zhang, Z.: Eye gaze tracking using an RGBD camera: a comparison with a RGB solution. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 1113–1121 (2014)

    Google Scholar 

  34. Zhou, X., Cai, H., Li, Y., Liu, H.: Two-eye model-based gaze estimation from a kinect sensor. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1646–1653. IEEE (2017)

    Google Scholar 

  35. Zhu, H., et al.: Facescape: 3D facial dataset and benchmark for single-view 3D face reconstruction. arXiv preprint arXiv:2111.01082 (2021)

Download references

Acknowledgment

The work described in this paper is supported in part by the U.S. National Science Foundation award CNS 1629856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyi Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuang, C., Kephart, J.O., Ji, Q. (2023). Towards an Accurate 3D Deformable Eye Model for Gaze Estimation. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37660-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37659-7

  • Online ISBN: 978-3-031-37660-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics