Abstract
In this paper we present a new method for determining simultaneously all the simple roots of a quaternionic polynomial. The proposed algorithm is a two-step iterative Weierstrass-like method and has cubic order of convergence. We also illustrate a variation of the method which combines the new scheme with a recently proposed deflation procedure for the case of polynomials with spherical roots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The zeros are all simple if they are all distinct and isolated.
References
Beck, B.: Sur les équations polynomiales dans les quaternions. Enseign. Math. 25, 193–201 (1979)
Dočev, K.: A variant of Newton’s method for the simultaneous approximation of all roots of an algebraic equation. Fiz. Mat. Spis. Bŭlgar. Akad. Nauk. 5(38), 136–139 (1962)
Durand, É.: Solutions Numériques des Equations Algébriques. Tome I: Equations du type F(x); Racines d’un Polynôme. Masson et Cie (1960)
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Evaluation schemes in the ring of quaternionic polynomials. BIT Numer. Math. 58(1), 51–72 (2018)
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Weierstrass method for quaternionic polynomial root-finding. Math. Methods Appl. Sci. 41(1), 423–437 (2018)
Falcão, M.I.: Newton method in the context of quaternion analysis. Appl. Math. Comput. 236, 458–470 (2014)
Falcão, M.I., Miranda, F.: Quaternions: a Mathematica package for quaternionic analysis. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 200–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21931-3_17
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Mathematica tools for quaternionic polynomials. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 394–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_27
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: A modified quaternionic Weierstrass method. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022). LNCS, vol. 13377, pp. 407–419. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10536-4_27
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Computational aspects of quaternionic polynomials - part II: root-finding methods. Math. J. (2018)
Gordon, B., Motzkin, T.: On the zeros of polynomials over division rings I. Trans. Am. Math. Soc. 116, 218–226 (1965)
Grau-Sánchez, M., Noguera, M., Grau, À., Herrero, J.R.: On new computational local orders of convergence. Appl. Math. Lett. 25(12), 2023–2030 (2012)
Gürlebeck, K., Sprößig, W.: Quaternionic and Cliford Calculus for Physicists and Engineers. Wiley, NY (1997)
Janovská, D., Opfer, G.: Computing quaternionic roots in Newton’s method. Electron. Trans. Numer. Anal. 26, 82–102 (2007)
Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Springer, New York (1991). https://doi.org/10.1007/978-1-4419-8616-0
Magreñán Ruiz, A.A., Argyros, I.K.: Two-step newton methods. J. Complex. 30(4), 533–553 (2014)
Miranda, F., Falcão, M.I.: Quaternion analysis package user’s guide (2014). http://w3.math.uminho.pt/QuaternionAnalysis
Niven, I.: Equations in quaternions. Am. Math. Mon. 48, 654–661 (1941)
Petković, I., Herceg, D.: Computer methodologies for comparison of computational efficiency of simultaneous methods for finding polynomial zeros. J. Comput. Appl. Math. 368, 112513 (2020)
Sakurai, T., Petković, M.: On some simultaneous methods based on Weierstrass’ correction. J. Comput. Appl. Math. 72(2), 275–291 (1996)
Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964)
Weierstrass, K.: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen. In: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, vol. II, pp. 1085–1101. Berlin (1891)
Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
Acknowledgment
Research at CMAT was partially financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Research at NIPE has been financed by FCT, within the Project UIDB/03182/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J. (2023). A Two-Step Quaternionic Root-Finding Method. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14104. Springer, Cham. https://doi.org/10.1007/978-3-031-37105-9_47
Download citation
DOI: https://doi.org/10.1007/978-3-031-37105-9_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37104-2
Online ISBN: 978-3-031-37105-9
eBook Packages: Computer ScienceComputer Science (R0)