Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Attention Model – A Deep Reinforcement Learning Approach for Container Relocation Problem

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Applications (IEA/AIE 2023)

Abstract

Container Relocation Problem (CRP) is one of the most important and fundamental problems in the terminal’s operations. Given a specified layout of the container yard with all the container retrieval priorities, CRP aims to identify an ideal container movement sequence so as to minimize the total number of container rehandling operations. In this paper, we are the first to propose a deep reinforcement learning method to tackle the problem. It adopts a dynamic attention model to respond to the changes of the layout. The long short-term memory and multi-head attention layers are introduced to better extract the features of stacks. We use a policy gradient algorithm with rollout baseline to train the model. The experiments demonstrate that our method can solve the problem effectively compared with other classic approaches. We conclude that the deep reinforcement learning approach has a great potential in solving CRP, as it can find desirable solution without using much expert domain knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/binarycopycode/CRP_DAM.

  2. 2.

    https://www.bwl.uni-hamburg.de/en/iwi/forschung/projekte/dataprojekte/brp-instances-caserta-etal-2012.zip.

  3. 3.

    https://sites.google.com/site/shunjitanaka/brp.

References

  1. Bacci, T., Mattia, S., Ventura, P.: A branch-and-cut algorithm for the restricted block relocation problem. Eur. J. Oper. Res. 287(2), 452–459 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning (2017)

    Google Scholar 

  3. Caserta, M., Schwarze, S., Voß, S.: A mathematical formulation and complexity considerations for the blocks relocation problem. Eur. J. Oper. Res. 219(1), 96–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caserta, M., Voß, S., Sniedovich, M.: Applying the corridor method to a blocks relocation problem. OR Spectrum 33(4), 915–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M.: A domain-specific knowledge-based heuristic for the blocks relocation problem. Adv. Eng. Inf. 28(4), 327–343 (2014)

    Article  Google Scholar 

  6. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M.: An exact approach for the blocks relocation problem. Expert Syst. Appl. 42(17), 6408–6422 (2015). https://doi.org/10.1016/j.eswa.2015.04.021. https://www.sciencedirect.com/science/article/pii/S0957417415002511

  7. Galle, V., Barnhart, C., Jaillet, P.: A new binary formulation of the restricted container relocation problem based on a binary encoding of configurations. Eur. J. Oper. Res. 267(2), 467–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, B., Tanaka, S.: An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules. Eur. J. Oper. Res. 304(2), 494–514 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jovanovic, R., Tuba, M., Voß, S.: An efficient ant colony optimization algorithm for the blocks relocation problem. Eur. J. Oper. Res. 274(1), 78–90 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, K.H., Hong, G.P.: A heuristic rule for relocating blocks. Comput. Oper. Res. 33(4), 940–954 (2006)

    Article  MATH  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: International Conference on Learning Representations (2018)

    Google Scholar 

  13. Ku, D., Arthanari, T.S.: On the abstraction method for the container relocation problem. Comput. Oper. Res. 68, 110–122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, K., Zhang, T., Wang, R., Wang, Y., Han, Y., Wang, L.: Deep reinforcement learning for combinatorial optimization: covering salesman problems. IEEE Trans. Cybern. 52(12), 13142–13155 (2021)

    Article  Google Scholar 

  15. Lu, C., Zeng, B., Liu, S.: A study on the block relocation problem: lower bound derivations and strong formulations. IEEE Trans. Autom. Sci. Eng. 17(4), 1829–1853 (2020)

    Article  Google Scholar 

  16. Peng, B., Wang, J., Zhang, Z.: A deep reinforcement learning algorithm using dynamic attention model for vehicle routing problems. In: Li, K., Li, W., Wang, H., Liu, Y. (eds.) ISICA 2019. CCIS, vol. 1205, pp. 636–650. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5577-0_51

    Chapter  Google Scholar 

  17. Quispe, K.E.Y., Lintzmayer, C.N., Xavier, E.C.: An exact algorithm for the blocks relocation problem with new lower bounds. Comput. Oper. Res. 99, 206–217 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. da Silva, M.D.M., Toulouse, S., Calvo, R.W.: A new effective unified model for solving the pre-marshalling and block relocation problems. Eur. J. Oper. Res. 271(1), 40–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  20. Tanaka, S., Mizuno, F.: An exact algorithm for the unrestricted block relocation problem. Comput. Oper. Res. 95, 12–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanaka, S., Takii, K.: A faster branch-and-bound algorithm for the block relocation problem. IEEE Trans. Autom. Sci. Eng. 1(13), 181–190 (2016)

    Article  Google Scholar 

  22. Tanaka, S., Voß, S.: An exact approach to the restricted block relocation problem based on a new integer programming formulation. Eur. J. Oper. Res. 296(2), 485–503 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tricoire, F., Scagnetti, J., Beham, A.: New insights on the block relocation problem. Comput. Oper. Res. 89, 127–139 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., Voß, S.: An improved mathematical formulation for the blocks relocation problem. Eur. J. Oper. Res. 245(2), 415–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zehendner, E., Feillet, D.: A branch and price approach for the container relocation problem. Int. J. Prod. Res. 52(24), 7159–7176 (2014)

    Article  Google Scholar 

  27. Zhang, C., Guan, H., Yuan, Y., Chen, W., Wu, T.: Machine learning-driven algorithms for the container relocation problem. Trans. Res. Part B: Methodol. 139, 102–131 (2020)

    Article  Google Scholar 

  28. Zhu, W., Qin, H., Lim, A., Zhang, H.: Iterative deepening a* algorithms for the container relocation problem. IEEE Trans. Autom. Sci. Eng. 9(4), 710–722 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Guangdong Province (No. 2019A1515011169, 2021A1515011301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizhen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Ye, T., Zhang, Z. (2023). Dynamic Attention Model – A Deep Reinforcement Learning Approach for Container Relocation Problem. In: Fujita, H., Wang, Y., Xiao, Y., Moonis, A. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2023. Lecture Notes in Computer Science(), vol 13926. Springer, Cham. https://doi.org/10.1007/978-3-031-36822-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36822-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36821-9

  • Online ISBN: 978-3-031-36822-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics