Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Evaluation of Direct and Indirect Memory Accesses in Fluid Flow Simulator

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

In petroleum reservoir simulations, the level of detail incorporated into the geologic model typically exceeds the capabilities of traditional flow simulators. In this sense, such simulations demand new high-performance computing techniques to deal with a large amount of data allocation and the high computational cost of computing the behavior of the fluids in the porous media. This paper presents optimizations performed on a code that implements an explicit numerical scheme to provide an approximate solution to the governing differential equation for water saturation in a two-phase flow problem with heterogeneous permeability and porosity fields. The experiments were performed on the SDumont Supercomputer using 2nd Generation Intel®Xeon®Scalable Processors (formerly Cascade Lake architecture). The paper employs a direct memory data access scheme to reduce the execution times of the numerical method. The article analyzes the performance gain using direct memory access related to indirect access memory. The results show that the optimizations implemented in the numerical code remarkably reduce the execution time of the simulations.

Supported by organization LNCC/SEPAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abreu, E.C.d., et al.: Modelagem e simulação computacional de escoamentos trifásicos em reservatórios de petróleo heterogêneos. Ph.D. thesis, Universidade do Estado do Rio de Janeiro (2007)

    Google Scholar 

  2. Borges, M., Furtado, F., Pereira, F., Souto, H.A.: Scaling analysis for the tracer flow problem in self-similar permeability fields. Multiscale Model. Simul. 7(3), 1130–1147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carneiro, I.B., Borges, M.R., Malta, S.M.C.: Aplicação de métodos de alta ordem na resolução de problemas bifásicos. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(2) (2018)

    Google Scholar 

  4. Causon, D., Mingham, C.: Introductory Finite Difference Methods for PDEs. Bookboon (2010)

    Google Scholar 

  5. Correa, M., Borges, M.: A semi-discrete central scheme for scalar hyperbolic conservation laws with heterogeneous storage coefficient and its application to porous media flow. Int. J. Numer. Meth. Fluids 73(3), 205–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dagan, G.: Flow and Transport in Porous Formations. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-75015-1

  7. Mulnix, D.L.: Intel®Xeon®processor scalable family technical overview (2017). https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

  8. Dupuis, A., Chopard, B.: Lattice gas: an efficient and reusable parallel library based on a graph partitioning technique. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds.) HPCN-Europe 1999. LNCS, vol. 1593, pp. 319–328. Springer, Heidelberg (1999). https://doi.org/10.1007/BFb0100593

    Chapter  Google Scholar 

  9. Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)

    Article  MathSciNet  Google Scholar 

  10. Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)

    Article  Google Scholar 

  11. Herrera, S., et al.: Optimizations in an numerical method code for two-phase fluids flow in porous media using the sDumont supercomputer. In: CILAMCE 2021-PANACM 2021 Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and III Pan-American Congress on Computational Mechanics, ABMEC-IACM Rio de Janeiro, Brazil, 9–12 November 2021. CILAMCE (2021)

    Google Scholar 

  12. Herschlag, G., Lee, S., Vetter, J.S., Randles, A.: GPU data access on complex geometries for D3Q19 lattice Boltzmann method. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 825–834. IEEE (2018)

    Google Scholar 

  13. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC 2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24644-2_20

    Chapter  Google Scholar 

  14. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM (2007)

    Google Scholar 

  15. Martys, N.S., Hagedorn, J.G.: Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods. Mater. Struct. 35, 650–658 (2002)

    Article  Google Scholar 

  16. Osthoff, C., et al.: A arquitetura do supercomputador sDumont e os desafios da pesquisa brasileira na área de computação de alto desempenho. In: Anais da XI Escola Regional de Alto Desempenho de São Paulo, pp. 1–5. SBC (2020)

    Google Scholar 

  17. Pan, C., Prins, J.F., Miller, C.T.: A high-performance lattice Boltzmann implementation to model flow in porous media. Comput. Phys. Commun. 158(2), 89–105 (2004)

    Article  MATH  Google Scholar 

  18. Parashar, M., Yotov, I.: An environment for parallel multi-block, multi-resolution reservoir simulations. In: Proceedings of the 11th International Conference on Parallel and Distributed Computing Systems (PDCS 98), Chicago, IL, International Society for Computers and their Applications (ISCA), pp. 230–235 (1998)

    Google Scholar 

  19. Respondek, J.: Matrix black box algorithms - a survey. Bull. Pol. Acad. Sci. Tech. Sci. 70(2), e140535 (2022)

    Google Scholar 

  20. Ryzhyk, L.: The Arm architecture. Chicago University, Illinois, EUA (2006)

    Google Scholar 

  21. Schulz, M., Krafczyk, M., Tölke, J., Rank, E.: Parallelization strategies and efficiency of CFD computations in complex geometries using lattice Boltzmann methods on high-performance computers. In: High Performance Scientific and Engineering Computing: proceedings of the 3rd International FORTWIHR Conference on HPSEC, Erlangen, 12–14 March 2001, vol. 21, pp. 115–122. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-55919-8_13

  22. Shashkov, M.: Conservative Finite-Difference Methods on General Grids, vol. 6. CRC Press (1995)

    Google Scholar 

  23. Silvester, P.P., Ferrari, R.L.: Finite Elements for Electrical Engineers. Cambridge University Press (1996)

    Google Scholar 

  24. Intel Corporation Site: performance monitoring events supported by Intel performance monitoring units (PMUs). https://perfmon-events.intel.com/

  25. Message Passing Interface Forum: MPI: a message passing interface. In: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, pp. 878–883 (1993)

    Google Scholar 

  26. Tuane, V.L.: Simulação Numérica tridimensional de escoamento em reservátorios de petróleo Heterogêneos. Master’s thesis, LNCC/MCT, Petrópolis, RJ, Brasil (2012)

    Google Scholar 

  27. Tuszyński, J., Löhner, R.: Parallelizing the construction of indirect access arrays for shared-memory machines. Commun. Numer. Meth. Eng. 14(8), 773–781 (1998)

    Article  MATH  Google Scholar 

  28. Vázquez-Cendón, M.E.: Solving Hyperbolic Equations with Finite Volume Methods. U, vol. 90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14784-0

    Book  MATH  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources for the SDumont supercomputer. The use of HPC resources contributed significantly to the research results reported in this paper. URL: http://sdumont.lncc.br. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stiw Harrison Herrera Taipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taipe, S.H.H. et al. (2023). An Evaluation of Direct and Indirect Memory Accesses in Fluid Flow Simulator. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics