Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning by Small Loss Approach Multi-label to Deal with Noisy Labels

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

Noisy data samples is a common problem for deep learning models applied to real-world applications. In this context, noisy samples refer to samples with incorrect labels, which can potentially degenerate the robustness of a model. Several works account for this issue in multi-class scenarios. However, despite a number of possible applications, multi-label noise remains an under-explored research field. In this work, two novel approaches to handle noise in this scenario are presented. First, we propose a new multi-label version of the Small Loss Approach (SLA), formerly multi-class, to handle multi-label noise. Second, we apply the multi-label SLA to a novel model, Learning by SLA Multi-label, based on Co-teaching. The proposed model achieves a performance gain of \(15\%\) in the benchmark UcMerced when compared to its baseline Co-teaching and a standard model (without any noise-handling technique). In addition, the model is also evaluated in a real-world scenario of underwater equipment imagery classification, yielding a relative improvement of \(9\%\) in F1-Score.

Supported by organization Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, Z., Kramer, S.: A label compression method for online multi-label classification. Pattern Recogn. Lett. 111, 64–71 (2018)

    Article  Google Scholar 

  2. Arpit, D., et al.: A closer look at memorization in deep networks. In: International conference on machine learning, pp. 233–242. PMLR (2017)

    Google Scholar 

  3. Burgert, T., Ravanbakhsh, M., Demir, B.: On the effects of different types of label noise in multi-label remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Article  Google Scholar 

  4. Chaudhuri, B., Demir, B., Chaudhuri, S., Bruzzone, L.: Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method. IEEE Trans. Geosci. Remote Sens. 56(2), 1144–1158 (2017)

    Article  Google Scholar 

  5. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE/CVF Conference On Computer Vision And Pattern Recognition, pp. 5177–5186 (2019)

    Google Scholar 

  6. Chicco, D., Jurman, G.: The advantages of the matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1–13 (2020)

    Article  Google Scholar 

  7. Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D.: Deep convolution neural network sharing for the multi-label images classification. Mach. Learn. Appl. 10, 100422 (2022)

    Google Scholar 

  8. Cuevas, A., Febrero, M., Fraiman, R.: An anova test for functional data. Comput. Stat. Data Anal. 47(1), 111–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference On Computer Vision And Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  11. Ghosh, A., Kumar, H., Sastry, P.S.: Robust loss functions under label noise for deep neural networks. In: Proceedings of the AAAI Conference On Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  12. Han, B., et al.: Co-teaching: Robust training of deep neural networks with extremely noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  13. Hu, M., Han, H., Shan, S., Chen, X.: Multi-label learning from noisy labels with non-linear feature transformation. In: Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part V 14. pp. 404–419. Springer (2019)

    Google Scholar 

  14. Hu, M., Han, H., Shan, S., Chen, X.: Weakly supervised image classification through noise regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11517–11525 (2019)

    Google Scholar 

  15. Huang, L., Zhang, C., Zhang, H.: Self-adaptive training: bridging the supervised and self-supervised learning. arXiv preprint arXiv:2101.08732 (2021)

  16. Inoue, N., Simo-Serra, E., Yamasaki, T., Ishikawa, H.: Multi-label fashion image classification with minimal human supervision. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2261–2267 (2017)

    Google Scholar 

  17. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference On Machine Learning, pp. 2304–2313. PMLR (2018)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  20. Liu, S., Niles-Weed, J., Razavian, N., Fernandez-Granda, C.: Early-learning regularization prevents memorization of noisy labels. Adv. Neural. Inf. Process. Syst. 33, 20331–20342 (2020)

    Google Scholar 

  21. Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 447–461 (2015)

    Article  Google Scholar 

  22. Liu, W., Jiang, Y.G., Luo, J., Chang, S.F.: Noise resistant graph ranking for improved web image search. In: CVPR 2011, pp. 849–856. IEEE (2011)

    Google Scholar 

  23. Malach, E., Shalev-Shwartz, S.: Decoupling “when to update” from “how to update". In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Sanderson, T., Scott, C.: Class proportion estimation with application to multiclass anomaly rejection. In: Artificial Intelligence and Statistics, pp. 850–858. PMLR (2014)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Song, H., Kim, M., Lee, J.G.: Selfie: Refurbishing unclean samples for robust deep learning. In: International Conference on Machine Learning, pp. 5907–5915. PMLR (2019)

    Google Scholar 

  27. Van Rooyen, B., Williamson, R.C.: A theory of learning with corrupted labels. J. Mach. Learn. Res. 18(1), 8501–8550 (2017)

    MathSciNet  Google Scholar 

  28. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy large-scale datasets with minimal supervision. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 839–847 (2017)

    Google Scholar 

  29. Wei, H., Feng, L., Chen, X., An, B.: Combating noisy labels by agreement: A joint training method with co-regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13726–13735 (2020)

    Google Scholar 

  30. Wei, T., Shi, J.X., Tu, W.W., Li, Y.F.: Robust long-tailed learning under label noise. arXiv preprint arXiv:2108.11569 (2021)

  31. Welinder, P., Branson, S., Perona, P., Belongie, S.: The multidimensional wisdom of crowds. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  32. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: CVPR (2015)

    Google Scholar 

  33. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

    Google Scholar 

  34. Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard, D., Lyman, K.: Learning to diagnose from scratch by exploiting dependencies among labels. arXiv preprint arXiv:1710.10501 (2017)

  35. Yao, Y., Sun, Z., Zhang, C., Shen, F., Wu, Q., Zhang, J., Tang, Z.: Jo-src: A contrastive approach for combating noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5192–5201 (2021)

    Google Scholar 

  36. Yu, X., Han, B., Yao, J., Niu, G., Tsang, I., Sugiyama, M.: How does disagreement help generalization against label corruption? In: International Conference on Machine Learning, pp. 7164–7173. PMLR (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, V., Pereira, A.L., Kohler, M., Pacheco, M. (2023). Learning by Small Loss Approach Multi-label to Deal with Noisy Labels. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics