Abstract
A novel problem called satellite downlink scheduling problem (SDSP) under breakpoint resume mode (SDSP-BRM) is studied in our paper. Compared to the traditional SDSP where an imaging data has to be completely downloaded at one time, SDSP-BRM allows the data of an imaging data be broken into a number of pieces which can be downloaded in different playback windows. By analyzing the characteristics of SDSP-BRM, we first propose a mixed integer programming model for its formulation and then prove the NP-hardness of SDSP-BRM. To solve the problem, we design a simple and effective heuristic algorithm (SEHA) where a number of problem-tailored move operators are proposed for local searching. Numerical results on a set of well-designed scenarios demonstrate the efficiency of the proposed algorithm in comparison to the general purpose CPLEX solver. We conduct additional experiments to shed light on the impact of the segmental strategy on the overall performance of the proposed SEHA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Huang, W., Sun, S.R., Jiang, H.B., et al.: GF-2 satellite 1 m/4 m camera design and in-orbit commissioning. Chin. J. Electron. 27(6), 1316–1321 (2018)
Chang, Z., Chen, Y., Yang, W., et al.: Mission planning problem for optical video satellite imaging with variable image duration: a greedy algorithm based on heuristic knowledge. Adv. Space Res. 66(11), 2597–2609 (2020)
Li, J., Li, J., Chen, H., et al.: A data transmission scheduling algorithm for rapid-response earth-observing operations. Chin. J. Aeronaut. 27(2), 349–364 (2014)
Wang, P., Reinelt, G., Gao, P., et al.: A model, a heuristic and a decision support system to solve the scheduling problem of an earth observing satellite constellation. Comput. Ind. Eng. 61(2), 322–335 (2011)
Xiao-Yue C X-G W. Ant colony algorithm for satellite data transmission scheduling problem. J. Syst. Eng. Electron. 24, 451–398 (2009)
Chang, F., Wu, X.Y.: Satellite data transmission scheduling problem based on velocity controllable particle swarm optimization. J. Astronaut. 31, 2015–2022 (2010)
Chen, H., Li, J., Jing, N., et al.: User-oriented data acquisition chain task planning algorithm for operationally responsive space satellite. J. Syst. Eng. Electron. 27(5), 1028–1039 (2016)
Corrao, G., Falone, R., Gambi, E., et al.: Ground station activity planning through a multi-algorithm optimisation approach. In: Proceedings of the 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL) (2012)
Chen, H., Wu, J., Shi, W., Li, J.: Coordinate scheduling approach for EDS observation tasks and data transmission jobs. J. Syst. Eng. Electron. 27(4), 822–835 (2016)
Li, Y.-F., Wu, X.-Y.: Application of genetic algorithm in satellite data transmission scheduling problem. Syst. Eng. Theor. Pract. 1, 124–131 (2008)
Chen, H., Li, L., Zhong, Z., et al.: Approach for earth observation satellite real-time and playback data transmission scheduling. J. Syst. Eng. Electron. 26(5), 982–992 (2015)
Maillard, A., Verfaillie, G., Pralet, C., et al.: Adaptable data download schedules for agile earth-observing satellites. J. Aerosp. Inf. Syst. 13(8), 280–300 (2016)
Karapetyan, D., Mitrovic Minic, S., Malladi, K.T., et al.: Satellite downlink scheduling problem: a case study. Omega 53, 115–123 (2015)
She, Y., Li, S., Li, Y., et al.: Slew path planning of agile-satellite antenna pointing mechanism with optimal real-time data transmission performance. Aerosp. Sci. Technol. 90, 103–114 (2019)
Barbulescu, L., Watson, J.-P., Whitley, L.D., et al.: Scheduling space-ground communications for the air force satellite control network. J. Sched. 1, 7–34 (2004)
Vazquez, A.J., Erwin, R.S.: On the tractability of satellite range scheduling. Optim. Lett. 9(2), 311–327 (2014)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman (1979)
Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016)
Acknowledgements
The research of Zhongxiang Chang was supported by the science and technology innovation Program of Hunan Province (2021RC2048).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chang, Z., Zhou, Z., Cheng, S. (2023). Satellite Downlink Scheduling Under Breakpoint Resume Mode. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13969. Springer, Cham. https://doi.org/10.1007/978-3-031-36625-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-36625-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36624-6
Online ISBN: 978-3-031-36625-3
eBook Packages: Computer ScienceComputer Science (R0)