Nothing Special   »   [go: up one dir, main page]

Skip to main content

Storage System for Energy Communities

  • Conference paper
  • First Online:
Technological Innovation for Connected Cyber Physical Spaces (DoCEIS 2023)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 678))

Included in the following conference series:

  • 328 Accesses

Abstract

Energy communities play a critical role as stakeholders in modern power grids. However, operating such communities can be challenging due to the complexities, uncertainties, and conflicting objectives involved. The purpose of this paper is to showcase how the integration of a storage system into an energy community can contribute to maintaining the well-being of each community member during grid faults. The study models two distinct energy communities, taking into account non-controllable and controllable devices in each home as sources of consumption and power supply sources such as PV systems installed in community homes, as well as power from the main grid or storage system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azarova, V., Cohen, J., Friedl, C., Reichl, J.: Designing local renewable energy communities to increase social acceptance: evidence from a choice experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 132, 1176–1183 (2019). https://doi.org/10.1016/J.ENPOL.2019.06.067

    Article  Google Scholar 

  2. Cohen, J., Moeltner, K., Reichl, A., Schmidthaler, M.: An empirical analysis of local opposition to new transmission lines across the EU-27. Energy J. 37, 59–82 (2016). https://doi.org/10.5547/01956574.37.3.jcoh

    Article  Google Scholar 

  3. Huang, Z., Yu, H., Peng, Z., Feng, Y.: Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution. https://www.sciencedirect.com/science/article/pii/S1364032117304768 (2017). https://doi.org/10.1016/j.rser.2017.04.004

  4. IEC Technical Committee 1 (Terminology): IEC 60050 - International Electrotechnical Vocabulary – Welcome. http://www.electropedia.org/. Accessed 10 Feb 2020

  5. Ceglia, F., Esposito, P., Maurizio, S.: Smart energy community and collective awareness: a systematic scientific and normative review. In: Business Management Theories and Practices in a Dynamic Competitive Environment, pp. 139–149. EuroMed Press (2019)

    Google Scholar 

  6. Visa, I., Duta, A. (eds.): CSE 2017. SPE, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63215-5

    Book  Google Scholar 

  7. Paci, S., Bertoldi, D.: Enabling Positive Energy Districts across Europe : energy efficiency couples renewable energy (2020). https://doi.org/10.2760/452028

  8. Pontes Luz, G., Amaro E Silva, R.: Modeling Energy Communities with Collective Photovoltaic Self-Consumption: Synergies between a Small City and a Winery in Portugal (2021). https://doi.org/10.3390/en14020323

  9. Sarfarazi, S., Deissenroth-Uhrig, M., Bertsch, V.: Aggregation of households in community energy systems: an analysis from actors⇔ and market perspectives. Energies 13 (2020). https://doi.org/10.3390/en13195154

  10. Rehman, H.,, Reda, F., Paiho, S., Hasan, A.: Towards positive energy communities at high latitudes. Energy Convers. Manag. 196, 175–195 (2019). https://doi.org/10.1016/j.enconman.2019.06.005

  11. Ala-Juusela, M., Crosbie, T., Hukkalainen, M.: Defining and operationalising the concept of an energy positive neighbourhood. Energy Convers. Manag. 125, 133–140 (2016). https://doi.org/10.1016/j.enconman.2016.05.052

    Article  Google Scholar 

  12. Walker, S., Labeodan, T., Maassen, W., Zeiler, W.: A review study of the current research on energy hub for energy positive neighborhoods. In: Energy Procedia, pp. 727–732. Elsevier, Amsterdam, the Netherlands (2017). https://doi.org/10.1016/j.egypro.2017.07.387

  13. Bartholmes, J.: Smart cities and communities. https://ec.europa.eu/inea/sites/inea/files/4._smart_cities_and_communities_j.bartholmes_k.maniatis.pdf (2017)

  14. Bartholmes, J.: Smart Cities and Communities SCC1 - 2018. 24 (2017)

    Google Scholar 

  15. Argyrou, M.C., Christodoulides, P., Kalogirou, S.A.: Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications (2018). https://doi.org/10.1016/j.rser.2018.06.044

  16. Kousksou, T., Bruel, P., Jamil, A., El Rhafiki, T., Zeraouli, Y.: Energy storage: applications and challenges (2014). https://doi.org/10.1016/j.solmat.2013.08.015

  17. Poullikkas, A.: Optimization analysis for pumped energy storage systems in small isolated power systems. Open Access J. J. Power Technol. 93, 78–89 (2013)

    Google Scholar 

  18. Hadjipaschalis, I., Poullikkas, A., Efthimiou, V.: Overview of current and future energy storage technologies for electric power applications (2009). https://doi.org/10.1016/j.rser.2008.09.028

  19. Denholm, P., Kulcinski, G.L.: Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers. Manag. 45, 2153–2172 (2004). https://doi.org/10.1016/j.enconman.2003.10.014

    Article  Google Scholar 

  20. Kaldellis, J.K., Zafirakis, D.: Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency. Energy 32, 2295–2305 (2007). https://doi.org/10.1016/j.energy.2007.07.009

    Article  Google Scholar 

  21. Denholm, P., Holloway, T.: Improved accounting of emissions from utility energy storage system operation (2005). https://pubs.acs.org/sharingguidelines. https://doi.org/10.1021/es0505898

  22. Mahlia, T.M.I., Saktisahdan, T.J., Jannifar, A., Hasan, M.H., Matseelar, H.S.C.: A review of available methods and development on energy storage. Technol. Update (2014). https://doi.org/10.1016/j.rser.2014.01.068

  23. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y.: Progress in electrical energy storage system: a critical review (2009). https://doi.org/10.1016/j.pnsc.2008.07.014

  24. Denholm, P., Ela, E., Kirby, B., Milligan, M.: The role of energy storage with renewable electricity generation. In: Energy Storage: Issues and Applications, pp. 1–58 (2011)

    Google Scholar 

  25. Bilgili, M., Ozbek, A., Sahin, B., Kahraman, A.: An overview of renewable electric power capacity and progress in new technologies in the world (2015). https://doi.org/10.1016/j.rser.2015.04.148

  26. Mousavi G, S.M., Faraji, F., Majazi, A., Al-Haddad, K.: A comprehensive review of Flywheel Energy Storage System technology (2017). https://doi.org/10.1016/j.rser.2016.09.060

  27. Sebastián, R., Peña Alzola, R.: Flywheel energy storage systems: Review and simulation for an isolated wind power system (2012). https://doi.org/10.1016/j.rser.2012.08.008

  28. Bolund, B., Bernhoff, H., Leijon, M.: Flywheel energy and power storage systems (2007). https://doi.org/10.1016/j.rser.2005.01.004

  29. Liu, H., Jiang, J.: Flywheel energy storage-an upswing technology for energy sustainability. Energy Build. 39, 599–604 (2007). https://doi.org/10.1016/j.enbuild.2006.10.001

    Article  Google Scholar 

  30. Evans, A., Strezov, V., Evans, T.J.: Assessment of utility energy storage options for increased renewable energy penetration (2012). https://doi.org/10.1016/j.rser.2012.03.048

  31. Parra, D., Norman, S.A., Walker, G.S., Gillott, M.: Optimum community energy storage system for demand load shifting. Appl. Energy. 174, 130–143 (2016). https://doi.org/10.1016/j.apenergy.2016.04.082

    Article  Google Scholar 

  32. van der Stelt, S., AlSkaif, T., van Sark, W.: Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances. Appl. Energy. 209, 266–276 (2018). https://doi.org/10.1016/j.apenergy.2017.10.096

    Article  Google Scholar 

  33. Koirala, B.P., van Oost, E., van der Windt, H.: Community energy storage: A responsible innovation towards a sustainable energy system? Appl. Energy. 231, 570–585 (2018). https://doi.org/10.1016/j.apenergy.2018.09.163

    Article  Google Scholar 

  34. Parra, D., Gillott, M., Norman, S.A., Walker, G.S.: Optimum community energy storage system for PV energy time-shift. Appl. Energy. 137, 576–587 (2015). https://doi.org/10.1016/j.apenergy.2014.08.060

    Article  Google Scholar 

  35. Barbour, E., Parra, D., Awwad, Z., González, M.C.: Community energy storage: A smart choice for the smart grid? Appl. Energy. 212, 489–497 (2018). https://doi.org/10.1016/j.apenergy.2017.12.056

    Article  Google Scholar 

  36. Richardson, I., Thomson, M., Infield, D.: A high-resolution domestic building occupancy model for energy demand simulations. Energy Build. 40, 1560–1566 (2008). https://doi.org/10.1016/j.enbuild.2008.02.006

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Portuguese FCT program, Center of Technology and Systems (CTS) UIDB/00066/2020 / UIDP/00066/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Mar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mar, A., Pereira, P., Martins, J. (2023). Storage System for Energy Communities. In: Camarinha-Matos, L.M., Ferrada, F. (eds) Technological Innovation for Connected Cyber Physical Spaces. DoCEIS 2023. IFIP Advances in Information and Communication Technology, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-031-36007-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36007-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36006-0

  • Online ISBN: 978-3-031-36007-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics