Nothing Special   »   [go: up one dir, main page]

Skip to main content

Assessment of FC-RDVM and LDIWM Router Replacement Methods by WMN-PSOHC Hybrid Simulation System Considering Chi-Square Mesh Client Distribution

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2023)

Abstract

With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. However, there are many issues in WMNs such as hidden terminal problem, guaranteeing network connectivity and coverage, which are closely related to the node placement problems and are known to be NP-hard. This paper focuses on the node placement problem in Wireless Mesh Networks (WMNs). We implemented a hybrid intelligent simulation system called WMN-PSOHC, which combines Particle Swarm Optimization (PSO) and Hill Climbing (HC). We assess the performance of Fast Convergence Rational Decrement of Vmax Method (FC-RDVM) with Linearly Decreasing Inertia Weight Method (LDIWM) considering the Chi-Square distribution of mesh clients. The simulation results show that FC-RDVM performs better than LDIWM for the considered scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    Article  MATH  Google Scholar 

  2. Amaldi, E., Capone, A., Cesana, M., Filippini, I., Malucelli, F.: Optimization models and methods for planning wireless mesh networks. Comput. Netw. 52(11), 2159–2171 (2008)

    Article  MATH  Google Scholar 

  3. Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering linearly decreasing inertia weight and linearly decreasing Vmax replacement methods. In: Barolli, L., Nishino, H., Miwa, H. (eds.) INCoS 2019. AISC, vol. 1035, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29035-1_2

    Chapter  Google Scholar 

  4. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  5. Franklin, A.A., Murthy, C.S.R.: Node placement algorithm for deployment of two-tier wireless mesh networks. In: Proceedings of the Global Telecommunications Conference, pp. 4823–4827 (2007)

    Google Scholar 

  6. Islam, M.M., Funabiki, N., Sudibyo, R.W., Munene, K.I., Kao, W.C.: A dynamic access-point transmission power minimization method using PI feedback control in elastic WLAN system for IoT applications. Internet Things 8(100), 089 (2019)

    Google Scholar 

  7. Muthaiah, S.N., Rosenberg, C.P.: Single gateway placement in wireless mesh networks. In: Proceedings of the 8th International IEEE Symposium on Computer Networks, pp. 4754–4759 (2008)

    Google Scholar 

  8. Oda, T.: A delaunay edges and simulated annealing-based integrated approach for mesh router placement optimization in wireless mesh networks. Sensors 23(3), 1050 (2023)

    Article  Google Scholar 

  9. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  10. Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Analysis of WMN-HC simulation system data using friedman test. In: The Ninth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2015), pp. 254–259. IEEE (2015)

    Google Scholar 

  11. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)

    Google Scholar 

  12. Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 23(1), 27–33 (2018)

    Article  Google Scholar 

  13. Sakamoto, S., Barolli, L., Okamoto, S.: A comparison study of linearly decreasing inertia weight method and rational decrement of Vmax method for WMNs using WMN-PSOHC intelligent system considering normal distribution of mesh clients. In: Barolli, L., Natwichai, J., Enokido, T. (eds.) EIDWT 2021. LNDECT, vol. 65, pp. 104–113. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70639-5_10

    Chapter  Google Scholar 

  14. Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)

    MathSciNet  Google Scholar 

  16. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810

    Chapter  Google Scholar 

  17. Taleb, S.M., Meraihi, Y., Gabis, A.B., Mirjalili, S., Ramdane-Cherif, A.: Nodes placement in wireless mesh networks using optimization approaches: a survey. Neural Comput. Appl. 34(7), 5283–5319 (2022)

    Article  Google Scholar 

  18. Vanhatupa, T., Hannikainen, M., Hamalainen, T.: Genetic algorithm to optimize node placement and configuration for WLAN planning. In: Proceedings of the 4th IEEE International Symposium on Wireless Communication Systems, pp. 612–616 (2007)

    Google Scholar 

  19. Wzorek, M., Berger, C., Doherty, P.: Router and gateway node placement in wireless mesh networks for emergency rescue scenarios. Auton. Intell. Syst. 1(1), 1–30 (2021). https://doi.org/10.1007/s43684-021-00012-0

    Article  Google Scholar 

  20. Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of the 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakamoto, S., Barolli, A., Liu, Y., Barolli, L., Takizawa, M. (2023). Assessment of FC-RDVM and LDIWM Router Replacement Methods by WMN-PSOHC Hybrid Simulation System Considering Chi-Square Mesh Client Distribution. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing . IMIS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-031-35836-4_18

Download citation

Publish with us

Policies and ethics