Abstract
In this paper, we explore the differences in movement between real life and virtual reality. To gather data for our study, 23 healthy adults were asked to move a box with their right hand in both a real life setting and virtual environment. The movements were captured using a marker-based motion capture system consisting of eight cameras. We analyzed the elbow flexion and angular velocity during object manipulation tasks in both virtual reality and the real-world using Statistical Parametric Mapping. The VR environment caused differences in the flexion angle and an decrease in the angular velocity compared to the real environment for the majority of the task duration. The findings suggest that VR environments can affect the kinematics of object manipulation and should be considered when designing VR interfaces for manual tasks.
The results of our study also provide new insights into the ways in which movement is impacted by virtual reality. Our findings have implications for a range of fields, including virtual reality technology, human-computer interaction, and sports science. By better understanding the differences between real-life and virtual movement, we can help to improve the design and use of virtual reality systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Amell, T., Kumar, S.: Work-related musculoskeletal disorders: design as a prevention strategy. A review. J. Occup. Rehabil. 11(4), 255–265 (2001). https://doi.org/10.1023/a:1013344508217
Cherni, H., Métayer, N., Souliman, N.: Literature review of locomotion techniques in virtual reality. IJVR 20(1), 1–20 (2020). https://doi.org/10.20870/IJVR.2020.20.1.3183
Crenna, F., Rossi, G.B., Berardengo, M.: Filtering biomechanical signals in movement analysis. Sensors 21(13), 4580 (2021). https://doi.org/10.3390/s21134580
Ellegast, R., Hermanns, I., Schiefer, C.: Feldmesssystem CUELA zur Langzeiterfassung und-analyse von Bewegungen an Arbeitsplätzen, vol. 375. GRIN Verlag, München (2010)
Friemert, D., Saala, F., Hartmann, U., Ellegast, R.: Similarities and differences in posture during simulated order picking in real life and virtual reality. In: Duffy, V.G. (ed.) DHM 2018. LNCS, vol. 10917, pp. 41–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91397-1_4
Friston, K.J.: Statistical Parametric Mapping. The Analysis of Functional Brain Images. Elsevier Science, Burlington (2011). https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=282095
Gabajová, G., Krajčovič, M., Matys, M., Furmannová, B., Burganová, N.: Designing virtual workplace using unity 3D game engine. AT 7(1), 35–39 (2021). https://doi.org/10.22306/atec.v7i1.101
Jäger, M., Luttmann, A., Göllner, R., Laurig, W.: “The dortmunder” - biomechanical model for quantification and assessment of the load on the lumbar spine. SAE Trans. 110, 2163–2171 (2001). http://www.jstor.org/stable/44731090
James Hung, H.M., Wang, S.-J.: Challenges to multiple testing in clinical trials. Biometrical J. 52(6), 747–756 (2010). https://doi.org/10.1002/bimj.200900206
Jürgens, H.W., Matzdorff, I., Windberg, J.: Internationale anthropometrische Daten als Voraussetzung für die Gestaltung von Arbeitsplätzen und Maschinen (1998)
Kjellberg, K., Lundin, A., Falkstedt, D., Allebeck, P., Hemmingsson, T.: Long-term physical workload in middle age and disability pension in men and women: a follow-up study of Swedish cohorts. Int. Arch. Occup. Environ. Health 89(8), 1239–1250 (2016). https://doi.org/10.1007/s00420-016-1156-0
McAtamney, L., Corlett, E.N.: RULA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24(2), 91–99 (1993). https://doi.org/10.1016/0003-6870(93)90080-S
Naouma, H., Pataky, T.C.: A comparison of random-field-theory and false-discovery-rate inference results in the analysis of registered one-dimensional biomechanical datasets. PeerJ 7, e8189 (2019). https://doi.org/10.7717/peerj.8189
Nüesch, C., Roos, E., Egloff, C., Pagenstert, G., Mündermann, A.: The effect of different running shoes on treadmill running mechanics and muscle activity assessed using statistical parametric mapping (SPM). Gait Posture 69, 1–7 (2019). https://doi.org/10.1016/j.gaitpost.2019.01.013
Pataky, T.C.: RFT1D: smooth one-dimensional random field upcrossing probabilities in Python. J. Stat. Soft. 71(7), 1–22 (2016). https://doi.org/10.18637/jss.v071.i07
Pataky, T.C., Robinson, M.A., Vanrenterghem, J.: Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 46(14), 2394–2401 (2013). https://doi.org/10.1016/j.jbiomech.2013.07.031
Pataky, T.C., Vanrenterghem, J., Robinson, M.A.: Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions. J. Biomech. 48(1), 186–189 (2015a). https://doi.org/10.1016/j.jbiomech.2014.10.013
Pataky, T.C., Vanrenterghem, J., Robinson, M.A.: Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. J. Biomech. 48(7), 1277–1285 (2015b). https://doi.org/10.1016/j.jbiomech.2015.02.051
Pontonnier, C., Samani, A., Badawi, M., Madeleine, P., Dumont, G.: Assessing the ability of a VR-based assembly task simulation to evaluate physical risk factors. IEEE Trans. Vis. Comput. Graph. 20(5), 664–674 (2014). https://doi.org/10.1109/TVCG.2013.252
Punnett, L., Wegman, D.H.: Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiological Kinesiol. 14(1), 13–23 (2004). https://doi.org/10.1016/j.jelekin.2003.09.015
De Ridder, R., Willems, T., Vanrenterghem, J., Robinson, M.A., Roosen, P.: Lower limb landing biomechanics in subjects with chronic ankle instability. Med. Sci. Sports Exerc. 47(6), 1225–1231 (2015). https://doi.org/10.1249/MSS.0000000000000525
Robinson, M.A., Vanrenterghem, J., Pataky, T.C.: Statistical parametric mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiological Kinesiol. 25(1), 14–19 (2015). https://doi.org/10.1016/j.jelekin.2014.10.018
Sadeghi, H., Mathieu, P.A., Sadeghi, S., Labelle, H.: Continuous curve registration as an intertrial gait variability reduction technique. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 24–30 (2003). https://doi.org/10.1109/TNSRE.2003.810428
Seabold, S., Perktold, J.: Statsmodels: Econometric and Statistical Modeling With Python (2010). https://www.researchgate.net/publication/264891066_Statsmodels_Econometric_and_Statistical_Modeling_with_Python
Serrien, B., Clijsen, R., Blondeel, J., Goossens, M., Baeyens, J.-P.: Differences in ball speed and three-dimensional kinematics between male and female handball players during a standing throw with run-up. BMC Sports Sci. Med. Rehabil. 7(1), 27 (2015). https://doi.org/10.1186/s13102-015-0021-x
Simonetto, M., Arena, S., Peron, M.: A methodological framework to integrate motion capture system and virtual reality for assembly system 4.0 workplace design. Saf. Sci. 146, 105561 (2022). https://doi.org/10.1016/j.ssci.2021.105561
van der Veen, S.M., Bordeleau, M., Pidcoe, P.E., France, C.R., Thomas, J.S.: Agreement analysis between Vive and Vicon systems to monitor lumbar postural changes. Sensors 19(17) (2019). https://doi.org/10.3390/s19173632
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2
Vox, J.P., Weber, A., Wolf, K.I., Izdebski, K., Schüler, T., König, P., et al.: An evaluation of motion trackers with virtual reality sensor technology in comparison to a marker-based motion capture system based on joint angles for ergonomic risk assessment. Sensors 21(9) (2021). https://doi.org/10.3390/s21093145
Wang, C.-Y., Hwang, W.-J., Fang, J.-J., Sheu, C.-F., Leong, I.-F., Ma, H.-I.: Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson’s disease: effects of moving targets. Arch. Phys. Med. Rehabil. 92(8), 1238–1245 (2011). https://doi.org/10.1016/j.apmr.2011.03.014
Whitman, L.E., Jorgensen, M., Hathiyari, K., Malzahn, D.: Virtual reality: its usefulness for ergonomic analysis. In: Proceedings of the 2004 Winter Simulation Conference (2004)
Worsley, K.J., Evans, A.C., Marrett, S., Neelin, P.: A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cerebral Blood Flow Metab. Off. J. Int. Soc. Cerebral Blood Flow Metab. 12(6), 900–918 (1992). https://doi.org/10.1038/jcbfm.1992.127
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mayat, N. et al. (2023). Investigating the Time Dependency of Elbow Flexion Angle Variations in Real and Virtual Grabbing Tasks Using Statistical Parametric Mapping. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14028. Springer, Cham. https://doi.org/10.1007/978-3-031-35741-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-35741-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35740-4
Online ISBN: 978-3-031-35741-1
eBook Packages: Computer ScienceComputer Science (R0)