Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modelling Moral Traits with Music Listening Preferences and Demographics

  • Conference paper
  • First Online:
Music in the AI Era (CMMR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13770 ))

Included in the following conference series:

Abstract

Music has always been an integral part of our everyday lives through which we express feelings, emotions, and concepts. Here, we explore the association between music genres, demographics and moral values employing data from an ad-hoc online survey and the Music Learning Histories Dataset. To further characterise the music preferences of the participants the generalist/specialist (GS) score employed. We exploit both classification and regression approaches to assess the predictive power of music preferences for the prediction of demographic attributes as well as the moral values of the participants. Our findings point out that moral values are hard to predict (.62 \(AUROC_{avg}\)) solely by the music listening behaviours, while if basic sociodemographic information is provided the prediction score rises to 4% on average (.66 \(AUROC_{avg}\)), with the Purity foundation to be the one that is steadily the one with the highest accuracy scores. Similar results are obtained from the regression analysis. Finally, we provide with insights on the most predictive music behaviours associated with each moral value that can inform a wide range of applications from rehabilitation practices to communication campaign design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., Lalmas, M.: Algorithmic effects on the diversity of consumption on spotify. In: Proceedings of the Web Conference 2020, pp. 2155–2165 (2020)

    Google Scholar 

  2. Anderson, I., et al.: “Just the way you are’’: linking music listening on spotify and personality. Soc. Psychol. Personal. Sci. 12(4), 561–572 (2021)

    Article  Google Scholar 

  3. Ansani, A., D’Errico, F., Poggi, I.: ‘You will be judged by the music i hear’: a study on the influence of music on moral judgement. In: Web Intelligence, pp. 53–62 (2019)

    Google Scholar 

  4. Araque, O., Gatti, L., Kalimeri, K.: Moralstrength: exploiting a moral lexicon and embedding similarity for moral foundations prediction. Knowl. Based Syst. 191, 105184 (2020)

    Google Scholar 

  5. Araque, O., Gatti, L., Kalimeri, K.: The language of liberty: a preliminary study. In: Companion Proceedings of the Web Conference 2021, pp. 623–626 (2021)

    Google Scholar 

  6. Banjo, O.O., Williams, K.M.: A house divided? Christian music in black and white. J. Media Religion 10(3), 115–137 (2011)

    Article  Google Scholar 

  7. Cusic, D.: The Sound of Light: A History of Gospel and Christian Music. Hal Leonard Corporation (2002)

    Google Scholar 

  8. Devenport, S.P., North, A.C.: Predicting musical taste: relationships with personality aspects and political orientation. Psychol. Music 47(6), 834–847 (2019)

    Article  Google Scholar 

  9. Gardikiotis, A., Baltzis, A.: ‘Rock music for myself and justice to the world!’: musical identity, values, and music preferences. Psychol. Music 40(2), 143–163 (2012)

    Article  Google Scholar 

  10. Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Personal. Soc. Psychol. 96(5), 1029–1044 (2009)

    Article  Google Scholar 

  11. Graham, J., Nosek, B., Haidt, J., Iyer, R., Koleva, S., Ditto, P.H.: Mapping the moral domain. J. Personal. Soc. Psychol. 101(2), 366–385 (2011)

    Article  Google Scholar 

  12. Greenberg, D.M., Müllensiefen, D., Lamb, M.E., Rentfrow, P.J.: Personality predicts musical sophistication. J. Res. Pers. 58, 154–158 (2015)

    Article  Google Scholar 

  13. Haidt, J., Joseph, C.: Intuitive ethics: how innately prepared intuitions generate culturally variable virtues. Daedalus 133(4), 55–66 (2004)

    Article  Google Scholar 

  14. Kalimeri, K., Beiró, M.G., Delfino, M., Raleigh, R., Cattuto, C.: Predicting demographics, moral foundations, and human values from digital behaviours. Comput. Hum. Behav. 92, 428–445 (2019)

    Article  Google Scholar 

  15. Krismayer, T., Schedl, M., Knees, P., Rabiser, R.: Predicting user demographics from music listening information. Multimed. Tools. Appl. 78(3), 2897–2920 (2019)

    Article  Google Scholar 

  16. Livengood, M., Ledoux Book, C.: Watering down Christianity? An examination of the use of theological words in Christian music. J. Media Religion 3(2), 119–129 (2004)

    Article  Google Scholar 

  17. Loersch, C., Arbuckle, N.L.: Unraveling the mystery of music: music as an evolved group process. J. Personal. Soc. Psychol. 105(5), 777–798 (2013)

    Article  Google Scholar 

  18. Lundberg, S.M., et al.: Explainable AI for trees: from local explanations to global understanding (2019)

    Google Scholar 

  19. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4768–4777 (2017)

    Google Scholar 

  20. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  21. MacCallum, R.C., Zhang, S., Preacher, K.J., Rucker, D.D.: On the practice of dichotomization of quantitative variables. Psychol. Methods 7(1), 19–40 (2002)

    Article  Google Scholar 

  22. MacDonald, R., Kreutz, G., Mitchell, L.: Music, Health, and Wellbeing. Oxford University Press, Oxford (2013)

    Google Scholar 

  23. Mejova, Y., Kalimeri, K.: Effect of values and technology use on exercise: implications for personalized behavior change interventions. In: Proceedings of the ACM Conference on User Modeling, Adaptation and Personalization (UMAP) 2019, pp. 36–45 (2019)

    Google Scholar 

  24. Miller, S.L., Maner, J.K., Becker, D.V.: Self-protective biases in group categorization: threat cues shape the psychological boundary between “us’’ and “them’’. J. Personal. Soc. Psychol. 99(1), 62–77 (2010)

    Article  Google Scholar 

  25. Nave, G., Minxha, J., Greenberg, D.M., Kosinski, M., Stillwell, D., Rentfrow, J.: Musical preferences predict personality: evidence from active listening and Facebook likes. Psychol. Sci. 29(7), 1145–1158 (2018)

    Article  Google Scholar 

  26. Preniqi, V., Kalimeri, K., Saitis, C.: “More than words”: linking music preferences and moral values through lyrics. arXiv preprint arXiv:2209.01169 (2022)

  27. Tajfel, H., Turner, J.C., Austin, W.G., Worchel, S.: An integrative theory of intergroup conflict. Org. Id.: Reader 56(65), 33–47 (1979)

    Google Scholar 

  28. Vigliensoni, G., Fujinaga, I.: The music listening histories dataset. In: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pp. 96–102 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the QMUL Centre for Doctoral Training in Data-informed Audience-centric Media Engineering (2021–2025) as part of a PhD studentship awarded to VP. KK acknowledges support from the “Lagrange Project” of the ISI Foundation, funded by the CRT Foundation. We would like to thank Dr. Robert Raleigh for providing the survey data, and the two anonymous reviewers for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vjosa Preniqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Preniqi, V., Kalimeri, K., Saitis, C. (2023). Modelling Moral Traits with Music Listening Preferences and Demographics. In: Aramaki, M., Hirata, K., Kitahara, T., Kronland-Martinet, R., Ystad, S. (eds) Music in the AI Era. CMMR 2021. Lecture Notes in Computer Science, vol 13770 . Springer, Cham. https://doi.org/10.1007/978-3-031-35382-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35382-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35381-9

  • Online ISBN: 978-3-031-35382-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics