Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effect of Gap Junction Distribution, Size, and Shape on the Conduction Velocity in a Cell-by-Cell Model for Electrophysiology

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Gap junction arrangement is a major determinant of cardiac conduction velocity. Importantly, structural remodeling of the myocardium may lead to pathological CV and a pro-arrhythmic substrate. In this work we aim at quantifying the side-to-side conduction velocity in a sub-micrometer model of the myocardium that accounts for gap junctions. We consider the Extracellular-Membrane-Intracellular (EMI) model, which describes the evolution of the electric potential within each cell and in the extracellular space. For the solution of the model, we propose a boundary integral formulation of the cell-to-cell model that leads to small system of ODEs. We study several configurations of lateral gap junction distribution, as well as different shapes and sizes of the cell-to-cell connection. We find that irregular positioning of gap junctions from cell to cell is of utmost importance to obtain realistic CV values, while gap junction’s shape is of secondary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulle, A., Grote, M.J., Rosilho de Souza, G.: Explicit stabilized multirate method for stiff differential equations. Math. Comput. 91, 2681–2714 (2022)

    Google Scholar 

  2. Corrado, D., Link, M.S., Calkins, H.: Arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 376(1), 61–72 (2017)

    Article  Google Scholar 

  3. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol.-Heart Circulatory Physiol. 275(1), H301–H321 (1998)

    Article  Google Scholar 

  4. Foster, K.R., Sowers, A.E.: Dielectrophoretic forces and potentials induced on pairs of cells in an electric field. Biophys. J. 69, 777–784 (1995)

    Article  Google Scholar 

  5. Gharaviri, A., et al.: Epicardial fibrosis explains increased endo-epicardial dissociation and epicardial breakthroughs in human atrial fibrillation. Front. Physiol. 11(68) (2020)

    Google Scholar 

  6. Henríquez, F., Jerez-Hanckes, C.: Multiple traces formulation and semi-implicit scheme for modelling biological cells under electrical stimulation. ESAIM: Math. Model. Numer. Anal. 52, 659–702 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leon, L.J., Roberge, F.A.: A model study of extracellular stimulation of cardiac cells. IEEE Trans. Biomed. Eng. 40, 1307–1319 (1993)

    Article  Google Scholar 

  8. Neu, J., Krassowska, W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21(2), 137–199 (1993)

    Google Scholar 

  9. Pennacchio, M., Savaré, G., Franzone, P.C.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pezzuto, S., Hake, J., Sundnes, J.: Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology. Int. J. Numer. Methods Biomed. Eng. 32, e02762 (2016)

    Article  MathSciNet  Google Scholar 

  11. Richardson, G., Chapman, S.J.: Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Math. 71(3), 657–675 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roth, B.J.: Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 44(4), 326–328 (1997)

    Article  Google Scholar 

  13. Schotten, U., Verheule, S., Kirchhof, P., Goette, A.: Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91(1), 265–325 (2011). https://doi.org/10.1152/physrev.00031.2009

    Article  Google Scholar 

  14. Severs, N.J., Bruce, A.F., Dupont, E., Rothery, S.: Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 80(1), 9–19 (2008)

    Article  Google Scholar 

  15. de Souza, G.R., Krause, R., Pezzuto, S.: Boundary integral formulation of the cell-by-cell model of cardiac electrophysiology, submitted. arXiv:2302.05281

  16. Spach, M.S., Heidlage, J.F.: The stochastic nature of cardiac propagation at a microscopic level: electrical description of myocardial architecture and its application to conduction. Circ. Res. 76(3), 366–380 (1995)

    Article  Google Scholar 

  17. Stinstra, J.G., Hopenfeld, B., MacLeod, R.S.: On the passive cardiac conductivity. Ann. Biomed. Eng. 33, 1743–1751 (2005)

    Article  Google Scholar 

  18. Tveito, A., Mardal, K.A., Rognes, M.E.: Modeling Excitable Tissue: The EMI Framework. Springer, Heidelberg (2021)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the European High-Performance Computing Joint Undertaking EuroHPC under grant agreement No 955495 (MICROCARD) co-funded by the Horizon 2020 programme of the European Union (EU) and the Swiss State Secretariat for Education, Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Pezzuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosilho de Souza, G., Pezzuto, S., Krause, R. (2023). Effect of Gap Junction Distribution, Size, and Shape on the Conduction Velocity in a Cell-by-Cell Model for Electrophysiology. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics