Nothing Special   »   [go: up one dir, main page]

Skip to main content

Asynchronous Test Equivalence over Timed Processes

  • Conference paper
  • First Online:
Theoretical Aspects of Software Engineering (TASE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13931))

Included in the following conference series:

  • 447 Accesses

Abstract

Each timed process exhibits a kind of input-output behaviour when subjected to asynchronous testing. This behaviour is called the asynchronous test behaviour of the process. Two processes exhibiting the same asynchronous test behaviour are called asynchronous test equivalent. In this paper, we first formalize the notion of asynchronous test behaviour of a timed process, and then address the following decision problem. Given two timed processes, determine whether they are asynchronous test equivalent or not. We prove this problem to be undecidable. The undecidability result holds even for processes with one clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM-RT 2004, Bertinoro, Italy, 13–18 September 2004, pp. 1–24 (2004)

    Google Scholar 

  3. Bhateja, P.: Asynchronous test equivalence over probabilistic processes. In: 27th Asia-Pacific Software Engineering Conference, APSEC-2020, Singapore, 1–4 December 2020

    Google Scholar 

  4. Bhateja, P.: Determining asynchronous test equivalence for probabilistic processes. Inf. Process. Lett. 177, 106269 (2022)

    Google Scholar 

  5. Bhateja, P., Gastin, P., Mukund, M.: A fresh look at testing for asynchronous communication. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 369–383. Springer, Heidelberg (2006). https://doi.org/10.1007/11901914_28

    Chapter  MATH  Google Scholar 

  6. Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asynchronous processes. Inf. Comput. 172, 139–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castellani, I., Hennessy, M.: Testing theories for asynchronous languages. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 90–101. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2_9

    Chapter  Google Scholar 

  8. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34, 83–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Adison-Wesley Publishing Company, Reading (1979)

    MATH  Google Scholar 

  11. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 387–401. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_25

    Chapter  Google Scholar 

  13. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 54–63 (2004)

    Google Scholar 

  14. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. North-Holland/Elsevier (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Bhateja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhateja, P. (2023). Asynchronous Test Equivalence over Timed Processes. In: David, C., Sun, M. (eds) Theoretical Aspects of Software Engineering. TASE 2023. Lecture Notes in Computer Science, vol 13931. Springer, Cham. https://doi.org/10.1007/978-3-031-35257-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35257-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35256-0

  • Online ISBN: 978-3-031-35257-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics