Abstract
The method of representing uncertainty can drastically influence a user’s interpretation of the visualised data. Whilst reasons for the scarce adoption of accepting uncertainty visualisations has been extensively researched, exploring further intuitive depiction methods has taken a back seat. Currently, most visualisation methods for uncertainty revolve around the comprehension of grasping pre-existing techniques such as confidence intervals and error bars. Moreover, this anticipates that the intended audience will be proficient in obtaining the relevant information displayed. To help establish an accessible method for the visualisation of uncertainty, we adopt a novel cross-disciplinary approach to further understand and depict the more intuitive/affective dimensions of uncertainty. The field of aesthetics is mostly associated with the discipline of art and design, but it has been applied in this research to evaluate its effectiveness for uncertainty visualisation. In a recent study with one thousand one hundred and forty-two participants, the authors examined the influence of applying aesthetic dimensions to the visualisation of a line graph. We find that certain aesthetic renderings afford a higher degree of uncertainty and provide an intuitive approach to mapping uncertainty to the data. By analysing the participants’ responses to different aesthetic renderings, we aim to build a picture of how we might encourage the use of uncertainty visualisation for a lay audience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Argote, L.: Input uncertainty and organizational coordination in hospital emergency units. Adm. Sci. Q. 27(3), 420–434 (1982). http://www.jstor.org/stable/2392320
Arnheim, R.: Visual Thinking. University of California Press (1969)
Belia, S., Fidler, F., Williams, J., Cumming, G.: Researchers misunderstand confidence intervals and standard error bars. Psychol. Methods 10(4), 389–396 (2014)
Bertin, J.: Semiology of Graphics: Diagrams, Networks. ESRI Press, Redlands (1967)
Bonneau, G.P., et al.: Overview and state-of-the-art of uncertainty visualization. Math. Visual. 37, 3–27 (2014)
Boukhelifa, N., Bezerianos, A., Isenberg, T., Fekete, J.D.: Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans. Visual. Comput. Graphics 18, 2769–2778 (2012)
Chaouali, W., Yahia, I.B., Lunardo, R., Triki, A.: Reconsidering the "what is beautiful is good" effect: when and how design aesthetics affect intentions towards mobile banking applications. Int. J. Bank Mark. 37 (2019)
Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graphics Appl. 25, 12–6(2005)
Correll, M., Gleicher, M.: Error bars considered harmful: exploring alternate encodings for mean and error. IEEE Trans. Vis. Comput. Graph. 20(12), 2142–2151 (2014)
Davis, S.B., Vane, O., Kräutli, F., Davis, S.B.: Can I believe what I see ? Data visualization and trust in the humanities the humanities. Interdisc. Sci. Rev. 46(4), 522–546 (2021)
Dewey, J.: Art as Experience. Perigee Books, New York (1932)
Dynata: The worlds largest first-party data platform. https://www.dynata.com/l. Accessed 13 Mar 2013
Egan, A.: Understanding aesthetics in design education. In: Proceedings of the 23rd International Conference on Engineering and Product Design Education, PDE 2021), VIA Design, VIA University in Herning, Denmark. 9th–10th September 2021 (2021)
Feisner, E.A.: Colour. Laurence King Publishing Ltd. London (2000)
Fischhoff, B., Davis, A.L.: Communicating scientific uncertainty. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 13664–13671 (September 2014)
Fishwick, P.: Aesthetic Computing. MIT Press, Cambridge (2008)
Gschwandtnei, T., Bögl, M., Federico, P., Miksch, S.: Visual encodings of temporal uncertainty: a comparative user study. IEEE Trans. Visual. Comput. Graphics 22, 539–548 (2016)
Guo, F., Li, M., Hu, M., Li, F., Lin, B.: Distinguishing and quantifying the visual aesthetics of a product: An integrated approach of eye-tracking and EEG. Int. J. Indust. Ergono. 71 (2019)
Hohl, M.: From abstract to actual: art and designer-like enquiries into data visualisation. Kybernetes 40 (2011)
Hullman, J.: Why authors don’t visualize uncertainty. IEEE Trans. Visual Comput. Graphics 26(1), 130–139 (2019)
Hullman, J., Resnick, P., Adar, E.: Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability of variable ordering. PLoS ONE 10(11), 1–25 (2015)
Hullman, J.R.: Framing artistic visualization: aesthetic object as evidence. creativity and cognition. In: 2009 Workshop on Understanding the Creative Act (2009)
Huston, J.P., Nadal, M., Mora, F., Agnati, L.F., Conde, C.J.C.: Art, Aesthetics, and the Brain. Oxford Scholarship Online, Oxford (2015)
Jena, A., Engelke, U., Dwyer, T., Raiamanickam, V., Paris, C.: Uncertainty Visualisation : an Interactive Visual Survey. In: 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 201–205 (2020)
Joslyn, S., Savelli, S.: Visualizing uncertainty for non-expert end users : the challenge of the deterministic construal error. Front. Comput. Sci. 2(January), 1–12 (2021)
Judelman, G.: Aesthetics and inspiration for visualization design: Bridging the gap between art and science.. In: Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004 (2004)
Kamal, A., et al.: Recent advances and challenges in uncertainty visualization: a survey. J. Visualization 24(5), 861–890 (2021). https://doi.org/10.1007/s12650-021-00755-1
Kinkeldey, C., Maceachren, A.M., Schiewe, J., Kinkeldey, C., Maceachren, A.M., Schiewe, J.: How to assess visual communication of uncertainty ? a systematic review of geospatial uncertainty Visualisation User Studies. Cartogr. J. 51(4), 372–386 (2014)
Lanzante, J.: A cautionary note on the use of error bars. J. Clim. 17(17), 3699–3703 (2005)
Levontin, P., Walton, J.L., Aufegger, L., Barons, M.J.: Visualising Uncertainty : A Short Introduction. No. January, AU4DM, London (2020)
Li, Q., Xu, C.: A new design framework of the aesthetic data visualization (2019)
Liu, L., Padilla, L., Creem-Regehr, S.H., House, D.H.: Visualizing uncertain tropical cyclone predictions using representative samples from ensembles of forecast tracks. IEEE Trans. Visual Comput. Graphics 25(1), 882–891 (2019)
Longstreet, P., Valacich, J., Wells, J.: Towards an understanding of online visual aesthetics: an instantiation of the composition perspective. Technol. Soc. 65 (2021)
MacEachren, A., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: What we know and what we need to know. Cartog. Geogr. Inf. Sci. 32, 139–160 (2005)
Maceachren, A.M.: How Maps Work, 1st edn. The Guildford Press, New York (1995)
MacEachren, A.M., Roth, R.E., O’Brien, J., Li, B., Swingley, D., Gahegan, M.: Visual semiotics amp; uncertainty visualization: an empirical study. IEEE Trans. Visual Comput. Graphics 18(12), 2496–2505 (2012)
Munro, T.: Aesthetics and the artist”. Leonardo 7 (1974)
Padilla, L., Kay, M., Hullman, J.: Uncertainty Visualizations. J. Cogn. Eng. Decis. Mak. 6(1), 30–56 (2020)
Padilla, L.M., Powell, M., Kay, M., Hullman, J.: Uncertain about uncertainty: how qualitative expressions of forecaster confidence impact decision-making with uncertainty visualizations. Front. Psychol. 11, 1–23 (2021)
Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Visual Comput. 13, 370–390 (1997)
Potter, K.C., Gerber, S., Anderson, E.W.: Visualization of uncertainty without a mean. IEEE Comput. Graphics Appl. 33, 75–79 (2013)
Reid, A., Miller, M.: Why is aesthetic awareness important for design students. In: Research and Development in Higher Education: Higher Education in a Changing World (2005)
Rettie, H., Daniels, J.: Supplemental material for coping and tolerance of uncertainty: predictors and mediators of mental health during the Covid-19 pandemic. Am. Psychol. 76, 427–437 (2021)
Roth, R.E.: Visual variables. In: Richardson, D., Castree, N., Goodchild, M.F., Kobayashki, A., Liu, W., Marston, R.A. (eds.) The International Encyclopedia of Geography, pp.1–11. Wiley (2017)
Sharma, G.: Pros and cons of different sampling techniques. Int. J. Appl. Res. 3(7), 749–752 (2017)
Shelley, J.: The Concept of the Aesthetic. Stanford Encyclopedia of Philosophy (2015)
Siang, T.Y.: The Building Blocks of Visual Design| Interaction Design Foundation. The MIT Press (2021)
Skeels, M., Lee, B., Smith, G., Robertson, G.: Revealing uncertainty for information visualization. In: Proceedings of the Workshop on Advanced Visual Interfaces AVI, vol. 9, pp. 70–81 (2010)
Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (1990)
Viégas, F.B., Wattenberg, M.: Artistic data visualization: beyond visual analytics. In: Schuler, D. (ed.) OCSC 2007. LNCS, vol. 4564, pp. 182–191. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73257-0_21
Vosough, Z., Kammer, D., Keck, M., Groh, R.: Visualization approaches for understanding uncertainty in flow diagrams. J. Comput. Lang. 52(April), 44–54 (2019)
Ware, C.: Information Visualization Perception for Design, 2nd edn.The Morgan Kaufmann Series. Morgan Kaufmann (2004)
Weiskopf, D.: Uncertainty visualization: Concepts, methods, and applications in biological data visualization. Front. Bioinform. 2, 1–17 (2022)
Wilke, C.O.: Fundamentals of Data Visualization, 1st edn. O’Reilly Media, Sebastopol (2019)
Zander, T., Öllinger, M., Volz, K.G.: Intuition and insight: two processes that build on each other or fundamentally differ? Front. Psychol. 14 (2016)
Zettl, H.: Sight, Sound, Motion: Applied Media Aesthetics 6th edn. Wadsworth Publishing Company (2014)
Acknowledgments
Supported by Knowledge Economy Skills Scholarships 2 (KESS2) which is an All Wales higher-level skills initiative led by Bangor University on behalf of the HE sectors in Wales. It is part-funded by the Welsh Government’s European Social Fund (ESF) competitiveness programme for East Wales.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pinney, J., Carroll, F., Chew, E. (2023). Enhancing Visual Encodings of Uncertainty Through Aesthetic Depictions in Line Graph Visualisations. In: Mori, H., Asahi, Y. (eds) Human Interface and the Management of Information. HCII 2023. Lecture Notes in Computer Science, vol 14015. Springer, Cham. https://doi.org/10.1007/978-3-031-35132-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-35132-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35131-0
Online ISBN: 978-3-031-35132-7
eBook Packages: Computer ScienceComputer Science (R0)