Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Visual Encodings of Uncertainty Through Aesthetic Depictions in Line Graph Visualisations

  • Conference paper
  • First Online:
Human Interface and the Management of Information (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14015))

Included in the following conference series:

  • 1048 Accesses

Abstract

The method of representing uncertainty can drastically influence a user’s interpretation of the visualised data. Whilst reasons for the scarce adoption of accepting uncertainty visualisations has been extensively researched, exploring further intuitive depiction methods has taken a back seat. Currently, most visualisation methods for uncertainty revolve around the comprehension of grasping pre-existing techniques such as confidence intervals and error bars. Moreover, this anticipates that the intended audience will be proficient in obtaining the relevant information displayed. To help establish an accessible method for the visualisation of uncertainty, we adopt a novel cross-disciplinary approach to further understand and depict the more intuitive/affective dimensions of uncertainty. The field of aesthetics is mostly associated with the discipline of art and design, but it has been applied in this research to evaluate its effectiveness for uncertainty visualisation. In a recent study with one thousand one hundred and forty-two participants, the authors examined the influence of applying aesthetic dimensions to the visualisation of a line graph. We find that certain aesthetic renderings afford a higher degree of uncertainty and provide an intuitive approach to mapping uncertainty to the data. By analysing the participants’ responses to different aesthetic renderings, we aim to build a picture of how we might encourage the use of uncertainty visualisation for a lay audience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argote, L.: Input uncertainty and organizational coordination in hospital emergency units. Adm. Sci. Q. 27(3), 420–434 (1982). http://www.jstor.org/stable/2392320

  2. Arnheim, R.: Visual Thinking. University of California Press (1969)

    Google Scholar 

  3. Belia, S., Fidler, F., Williams, J., Cumming, G.: Researchers misunderstand confidence intervals and standard error bars. Psychol. Methods 10(4), 389–396 (2014)

    Article  Google Scholar 

  4. Bertin, J.: Semiology of Graphics: Diagrams, Networks. ESRI Press, Redlands (1967)

    Google Scholar 

  5. Bonneau, G.P., et al.: Overview and state-of-the-art of uncertainty visualization. Math. Visual. 37, 3–27 (2014)

    Article  Google Scholar 

  6. Boukhelifa, N., Bezerianos, A., Isenberg, T., Fekete, J.D.: Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans. Visual. Comput. Graphics 18, 2769–2778 (2012)

    Google Scholar 

  7. Chaouali, W., Yahia, I.B., Lunardo, R., Triki, A.: Reconsidering the "what is beautiful is good" effect: when and how design aesthetics affect intentions towards mobile banking applications. Int. J. Bank Mark. 37 (2019)

    Google Scholar 

  8. Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graphics Appl. 25, 12–6(2005)

    Google Scholar 

  9. Correll, M., Gleicher, M.: Error bars considered harmful: exploring alternate encodings for mean and error. IEEE Trans. Vis. Comput. Graph. 20(12), 2142–2151 (2014)

    Article  Google Scholar 

  10. Davis, S.B., Vane, O., Kräutli, F., Davis, S.B.: Can I believe what I see ? Data visualization and trust in the humanities the humanities. Interdisc. Sci. Rev. 46(4), 522–546 (2021)

    Article  Google Scholar 

  11. Dewey, J.: Art as Experience. Perigee Books, New York (1932)

    Google Scholar 

  12. Dynata: The worlds largest first-party data platform. https://www.dynata.com/l. Accessed 13 Mar 2013

  13. Egan, A.: Understanding aesthetics in design education. In: Proceedings of the 23rd International Conference on Engineering and Product Design Education, PDE 2021), VIA Design, VIA University in Herning, Denmark. 9th–10th September 2021 (2021)

    Google Scholar 

  14. Feisner, E.A.: Colour. Laurence King Publishing Ltd. London (2000)

    Google Scholar 

  15. Fischhoff, B., Davis, A.L.: Communicating scientific uncertainty. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 13664–13671 (September 2014)

    Google Scholar 

  16. Fishwick, P.: Aesthetic Computing. MIT Press, Cambridge (2008)

    Google Scholar 

  17. Gschwandtnei, T., Bögl, M., Federico, P., Miksch, S.: Visual encodings of temporal uncertainty: a comparative user study. IEEE Trans. Visual. Comput. Graphics 22, 539–548 (2016)

    Google Scholar 

  18. Guo, F., Li, M., Hu, M., Li, F., Lin, B.: Distinguishing and quantifying the visual aesthetics of a product: An integrated approach of eye-tracking and EEG. Int. J. Indust. Ergono. 71 (2019)

    Google Scholar 

  19. Hohl, M.: From abstract to actual: art and designer-like enquiries into data visualisation. Kybernetes 40 (2011)

    Google Scholar 

  20. Hullman, J.: Why authors don’t visualize uncertainty. IEEE Trans. Visual Comput. Graphics 26(1), 130–139 (2019)

    Article  Google Scholar 

  21. Hullman, J., Resnick, P., Adar, E.: Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability of variable ordering. PLoS ONE 10(11), 1–25 (2015)

    Article  Google Scholar 

  22. Hullman, J.R.: Framing artistic visualization: aesthetic object as evidence. creativity and cognition. In: 2009 Workshop on Understanding the Creative Act (2009)

    Google Scholar 

  23. Huston, J.P., Nadal, M., Mora, F., Agnati, L.F., Conde, C.J.C.: Art, Aesthetics, and the Brain. Oxford Scholarship Online, Oxford (2015)

    Google Scholar 

  24. Jena, A., Engelke, U., Dwyer, T., Raiamanickam, V., Paris, C.: Uncertainty Visualisation : an Interactive Visual Survey. In: 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 201–205 (2020)

    Google Scholar 

  25. Joslyn, S., Savelli, S.: Visualizing uncertainty for non-expert end users : the challenge of the deterministic construal error. Front. Comput. Sci. 2(January), 1–12 (2021)

    Google Scholar 

  26. Judelman, G.: Aesthetics and inspiration for visualization design: Bridging the gap between art and science.. In: Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004 (2004)

    Google Scholar 

  27. Kamal, A., et al.: Recent advances and challenges in uncertainty visualization: a survey. J. Visualization 24(5), 861–890 (2021). https://doi.org/10.1007/s12650-021-00755-1

    Article  MathSciNet  Google Scholar 

  28. Kinkeldey, C., Maceachren, A.M., Schiewe, J., Kinkeldey, C., Maceachren, A.M., Schiewe, J.: How to assess visual communication of uncertainty ? a systematic review of geospatial uncertainty Visualisation User Studies. Cartogr. J. 51(4), 372–386 (2014)

    Article  Google Scholar 

  29. Lanzante, J.: A cautionary note on the use of error bars. J. Clim. 17(17), 3699–3703 (2005)

    Article  Google Scholar 

  30. Levontin, P., Walton, J.L., Aufegger, L., Barons, M.J.: Visualising Uncertainty : A Short Introduction. No. January, AU4DM, London (2020)

    Google Scholar 

  31. Li, Q., Xu, C.: A new design framework of the aesthetic data visualization (2019)

    Google Scholar 

  32. Liu, L., Padilla, L., Creem-Regehr, S.H., House, D.H.: Visualizing uncertain tropical cyclone predictions using representative samples from ensembles of forecast tracks. IEEE Trans. Visual Comput. Graphics 25(1), 882–891 (2019)

    Article  Google Scholar 

  33. Longstreet, P., Valacich, J., Wells, J.: Towards an understanding of online visual aesthetics: an instantiation of the composition perspective. Technol. Soc. 65 (2021)

    Google Scholar 

  34. MacEachren, A., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: What we know and what we need to know. Cartog. Geogr. Inf. Sci. 32, 139–160 (2005)

    Google Scholar 

  35. Maceachren, A.M.: How Maps Work, 1st edn. The Guildford Press, New York (1995)

    Google Scholar 

  36. MacEachren, A.M., Roth, R.E., O’Brien, J., Li, B., Swingley, D., Gahegan, M.: Visual semiotics amp; uncertainty visualization: an empirical study. IEEE Trans. Visual Comput. Graphics 18(12), 2496–2505 (2012)

    Article  Google Scholar 

  37. Munro, T.: Aesthetics and the artist”. Leonardo 7 (1974)

    Google Scholar 

  38. Padilla, L., Kay, M., Hullman, J.: Uncertainty Visualizations. J. Cogn. Eng. Decis. Mak. 6(1), 30–56 (2020)

    Google Scholar 

  39. Padilla, L.M., Powell, M., Kay, M., Hullman, J.: Uncertain about uncertainty: how qualitative expressions of forecaster confidence impact decision-making with uncertainty visualizations. Front. Psychol. 11, 1–23 (2021)

    Google Scholar 

  40. Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Visual Comput. 13, 370–390 (1997)

    Article  Google Scholar 

  41. Potter, K.C., Gerber, S., Anderson, E.W.: Visualization of uncertainty without a mean. IEEE Comput. Graphics Appl. 33, 75–79 (2013)

    Article  Google Scholar 

  42. Reid, A., Miller, M.: Why is aesthetic awareness important for design students. In: Research and Development in Higher Education: Higher Education in a Changing World (2005)

    Google Scholar 

  43. Rettie, H., Daniels, J.: Supplemental material for coping and tolerance of uncertainty: predictors and mediators of mental health during the Covid-19 pandemic. Am. Psychol. 76, 427–437 (2021)

    Article  Google Scholar 

  44. Roth, R.E.: Visual variables. In: Richardson, D., Castree, N., Goodchild, M.F., Kobayashki, A., Liu, W., Marston, R.A. (eds.) The International Encyclopedia of Geography, pp.1–11. Wiley (2017)

    Google Scholar 

  45. Sharma, G.: Pros and cons of different sampling techniques. Int. J. Appl. Res. 3(7), 749–752 (2017)

    Google Scholar 

  46. Shelley, J.: The Concept of the Aesthetic. Stanford Encyclopedia of Philosophy (2015)

    Google Scholar 

  47. Siang, T.Y.: The Building Blocks of Visual Design| Interaction Design Foundation. The MIT Press (2021)

    Google Scholar 

  48. Skeels, M., Lee, B., Smith, G., Robertson, G.: Revealing uncertainty for information visualization. In: Proceedings of the Workshop on Advanced Visual Interfaces AVI, vol. 9, pp. 70–81 (2010)

    Google Scholar 

  49. Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (1990)

    Google Scholar 

  50. Viégas, F.B., Wattenberg, M.: Artistic data visualization: beyond visual analytics. In: Schuler, D. (ed.) OCSC 2007. LNCS, vol. 4564, pp. 182–191. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73257-0_21

    Chapter  Google Scholar 

  51. Vosough, Z., Kammer, D., Keck, M., Groh, R.: Visualization approaches for understanding uncertainty in flow diagrams. J. Comput. Lang. 52(April), 44–54 (2019)

    Article  Google Scholar 

  52. Ware, C.: Information Visualization Perception for Design, 2nd edn.The Morgan Kaufmann Series. Morgan Kaufmann (2004)

    Google Scholar 

  53. Weiskopf, D.: Uncertainty visualization: Concepts, methods, and applications in biological data visualization. Front. Bioinform. 2, 1–17 (2022)

    Google Scholar 

  54. Wilke, C.O.: Fundamentals of Data Visualization, 1st edn. O’Reilly Media, Sebastopol (2019)

    Google Scholar 

  55. Zander, T., Öllinger, M., Volz, K.G.: Intuition and insight: two processes that build on each other or fundamentally differ? Front. Psychol. 14 (2016)

    Google Scholar 

  56. Zettl, H.: Sight, Sound, Motion: Applied Media Aesthetics 6th edn. Wadsworth Publishing Company (2014)

    Google Scholar 

Download references

Acknowledgments

Supported by Knowledge Economy Skills Scholarships 2 (KESS2) which is an All Wales higher-level skills initiative led by Bangor University on behalf of the HE sectors in Wales. It is part-funded by the Welsh Government’s European Social Fund (ESF) competitiveness programme for East Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Pinney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinney, J., Carroll, F., Chew, E. (2023). Enhancing Visual Encodings of Uncertainty Through Aesthetic Depictions in Line Graph Visualisations. In: Mori, H., Asahi, Y. (eds) Human Interface and the Management of Information. HCII 2023. Lecture Notes in Computer Science, vol 14015. Springer, Cham. https://doi.org/10.1007/978-3-031-35132-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35132-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35131-0

  • Online ISBN: 978-3-031-35132-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics