Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cognitive Simulations for Adaptive Instructional Systems: Exploring Instruction Strategies with Simulated Tutors and Learners

  • Conference paper
  • First Online:
Adaptive Instructional Systems (HCII 2023)

Abstract

Computational models of learners have been recognized to play various roles in training and learning environments. While optimized tutoring strategies should be determined through empirical investigation, the adaptive instructional system design space is too large to fully validate empirically. Synthetic data generated by simulated learners could be one approach to explore the interaction between learner behaviours and adaptive instructional system strategies. The current paper reports on a computer simulation design and results for modelling the effects of learning and training strategies on the learning and performance of simulated learners. The application domain is marine navigation. The computer simulation included a fairly autonomous learning agent with self-assessment capabilities (reinforcement learning), and other means to acquire knowledge and skills including learning from instructions, and declarative memory base-level activation. Three instructional strategies were simulated: 1) a minimalist method leaving the simulated learner to proceed only by trial and error, 2) a discovery method where the simulated learners are left on their own but with an added capability to store a declarative representation of successful rules, and 3) a briefing then practice method, where all the declarative rules to execute tasks are in declarative memory prior to executing navigation tasks.

This project was supported in part by collaborative research funding from the National Research Council of Canada’s Artificial Intelligence for Logistics Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACT-R Research Group (2002). http://act-r.psy.cmu.edu, http://act-r.psy.cmu.edu

  2. Anderson, J., Betts, S., Bothell, D., Hope, R.M., Lebiere, C.: Three aspects of skill acquisition, June 2018. https://doi.org/10.31234/osf.io/rh6zt, psyarxiv.com/rh6zt

  3. Anderson, J.R., Betts, S., Bothell, D., Lebiere, C.: Discovering skill. Cogn. Psychol. 129, 101410 (2021). https://doi.org/10.1016/j.cogpsych.2021.101410, https://www.sciencedirect.com/science/article/pii/S0010028521000335

  4. Cockburn, A., Gutwin, C., Scarr, J., Malacria, S.: Supporting novice to expert transitions in user interfaces. ACM Comput. Surv. 47(2), 1–36 (2015). https://doi.org/10.1145/2659796, https://dl.acm.org/doi/10.1145/2659796

  5. Domeshek, E., Ramachandran, S., Jensen, R., Ludwig, J., Ong, J., Stottler, D.: Lessons from building diverse adaptive instructional systems (AIS). In: Sottilare, R.A., Schwarz, J. (eds.) Adaptive Instructional Systems. HCII 2019. LNCS, vol. 11597, pp. 62–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22341-0, http://link.springer.com/10.1007/978-3-030-22341-0

  6. Emond, B.: WN-LEXICAL: an ACT-R module built from the WordNet lexical database. In: Seventh International Conference on Cognitive Modeling, pp. 359–360. Trieste, Italy (2006)

    Google Scholar 

  7. Emond, B., Comeau, G.: Cognitive modelling of early music reading skill acquisition for piano: a comparison of the Middle-C and Intervallic methods. Cogn. Syst. Res. 24, 26–34 (2013). https://doi.org/10.1016/j.cogsys.2012.12.007, http://dx.doi.org/10.1016/j.cogsys.2012.12.007

  8. Emond, B., et al.: Development of AIS Using simulated learners, Bayesian networks and knowledge elicitation methods. In: Sottilare, R.A., Schwarz, J. (eds.) Adaptive Instructional Systems. HCII 2022. LNCS, vol. 13332, pp. 143–158. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05887-5_11

  9. Emond, B., Vinson, N.G.: Modelling simple ship conning tasks. In: 15th Meeting of the International Conference on Cognitive Modelling, pp. 42–44. Coventry, UK (2017)

    Google Scholar 

  10. Emond, B., West, R.R.L.: Cyberpsychology: a human-interaction perspective based on cognitive modeling. Cyberpsychol. Behav. 6(5), 527–536 (2003). https://doi.org/10.1089/109493103769710550

  11. Emond, B., West, R.L.: Using cognitive modelling simulations for user interface design decisions. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 305–314. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24677-0_32

    Chapter  Google Scholar 

  12. Essa, A., Mojarad, S.: Does time matter in learning? A computer simulation of Carroll’s model of learning. In: Sottilare, R.A., Schwarz, J. (eds.) HCII 2020. LNCS, vol. 12214, pp. 458–474. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50788-6_34

    Chapter  Google Scholar 

  13. Harpstead, E., MacLellan, C.J., Weitekamp, D., Koedinger, K.R.: The use simulated learners in adaptive education. In: AIAED-19: AI + Adaptive Education, pp. 1–3. Beijing, China (2019)

    Google Scholar 

  14. Lelei, D.E.K., McCalla, G.: How to use simulation in the design and evaluation of learning environments with self-directed longer-term learners. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 253–266. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93843-1_19

    Chapter  Google Scholar 

  15. MacLellan, C.J., Koedinger, K.R.: Domain-general tutor authoring with apprentice learner models. Int. J. Artif. Intell. Educ. (2020). https://doi.org/10.1007/s40593-020-00214-2, https://link.springer.com/10.1007/s40593-020-00214-2

  16. McCalla, G., Champaign, J.: Simulated learners. IEEE Intell. Syst. 28(4), 67–71 (2013). https://doi.org/10.1109/MIS.2013.116

    Article  Google Scholar 

  17. McEneaney, J.E.: Simulation-based evaluation of learning sequences for instructional technologies. Instruct. Sci. 44(1), 87–106 (2016). https://doi.org/10.1007/s11251-016-9369-x, http://link.springer.com/10.1007/s11251-016-9369-x

  18. Ritter, F.E., Yeh, M.K.C., Yan, Y., Siu, K.C., Oleynikov, D.: Effects of varied surgical simulation training schedules on motor-skill acquisition. Surg. Innov. 27(1), 68–80 (2020). https://doi.org/10.1177/1553350619881591, http://journals.sagepub.com/doi/10.1177/1553350619881591

  19. Smith, J., Yazdanpanah, F., Thistle, R., Musharraf, M., Veitch, B.: Capturing expert knowledge to inform decision support technology for marine operations. J. Marine Sci. Eng. 8(9) (2020). https://doi.org/10.3390/JMSE8090689

  20. Spain, R., Rowe, J., Smith, A., Goldberg, B., Pokorny, R., Mott, B., Lester, J.: A reinforcement learning approach to adaptive remediation in online training. J. Defense Model. Simul. Appl. Methodol. Technol. (2021). https://doi.org/10.1177/15485129211028317, http://journals.sagepub.com/doi/10.1177/15485129211028317

  21. Thistle, R., Veitch, B.: An evidence-based method of training to targeted levels of performance. In: SNAME Maritime Convention 2019, SMC 2019 (2019)

    Google Scholar 

  22. Veitch, E., Molyneux, D., Smith, J., Veitch, B.: Investigating the influence of bridge officer experience on ice management effectiveness using a marine simulator experiment. J. Offshore Mech. Arctic Eng. 141(4) (2019). https://doi.org/10.1115/1.4041761, https://asmedigitalcollection.asme.org/offshoremechanics/article/doi/10.1115/1.4041761/475585/Investigating-the-Influence-of-Bridge-Officer

  23. Walsh, M.M., et al.: Mechanisms underlying the spacing effect in learning: a comparison of three computational models. J. Exp. Psychol. Gen. 147(9), 1325–1348 (2018). https://doi.org/10.1037/xge0000416, http://doi.apa.org/getdoi.cfm?doi=10.1037/xge0000416

  24. Weitekamp, D., Harpstead, E., Koedinger, K.R.: An interaction design for machine teaching to develop AI tutors, pp. 1–11. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3313831.3376226

  25. Weitekamp, D., Ye, Z., Rachatasumrit, N., Harpstead, E., Koedinger, K.: Investigating differential error types between human and simulated learners. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 586–597. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_47

    Chapter  Google Scholar 

  26. Wray, R., Stowers, K.: Interactions between learner assessment and content requirement: a verification approach. Adv. Intell. Syst. Comput. 596, 36–45 (2018). https://doi.org/10.1007/978-3-319-60018-5_4

    Article  Google Scholar 

  27. Wray, R.E.: Enhancing simulated students with models of self-regulated learning. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) HCII 2019. LNCS (LNAI), vol. 11580, pp. 644–654. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22419-6_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Emond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Crown

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emond, B., Zeinali-Torbati, R., Smith, J., Billard, R., Barnes, J., Veitch, B. (2023). Cognitive Simulations for Adaptive Instructional Systems: Exploring Instruction Strategies with Simulated Tutors and Learners. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. HCII 2023. Lecture Notes in Computer Science, vol 14044. Springer, Cham. https://doi.org/10.1007/978-3-031-34735-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34735-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34734-4

  • Online ISBN: 978-3-031-34735-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics