Nothing Special   »   [go: up one dir, main page]

Skip to main content

Heart Rate During Sleep Measured Using Finger-, Wrist- and Chest-Worn Devices: A Comparison Study

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2022)

Abstract

Wearable heart rate (HR) sensing devices are increasingly used to monitor human health. The availability and the quality of the HR measurements may however be affected by the body location at which the device is worn. The goal of this paper is to compare HR data collected from different devices and body locations and to investigate their interchangeability at different stages of the data analysis pipeline. To this goal, we conduct a data collection campaign and collect HR data from three devices worn at different body positions (finger, wrist, chest): The Oura ring, the Empatica E4 wristband and the Polar chestbelt. We recruit five participants for 30 nights and gather HR data along with self-reports about sleep behavior. We compare the raw data, the features extracted from this data over different window sizes, and the performance of models that use these features in recognizing sleep quality. Raw HR data from the three devices show a high positive correlation. When features are extracted from the raw data, though, both small and significant differences can be observed. Ultimately, the accuracy of a sleep quality recognition classifier does not show significant differences when the input data is derived from the Oura ring or the E4 wristband. Taken together, our results indicate that the HR measurements collected from the considered devices and body locations are interchangeable. These findings open up new opportunities for sleep monitoring systems to leverage multiple devices for continuous sleep tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Please contact the corresponding author of the paper to make a request regarding the dataset.

  2. 2.

    Heart Rate from multiple devices and body positions for Sleep measurement.

  3. 3.

    Oura Ring: https://ouraring.com; Apple watch: https://www.apple.com/watch/; THIM ring: https://thim.io; Fitbit: https://www.fitbit.com/; Actiwatch: https://www.usa.philips.com/healthcare/sites/actigraphy; Samsung Gear Sport watch: https://www.samsung.com/us/watches/galaxy-watch4/.

  4. 4.

    https://www.empatica.com/en-gb/research/e4/.

  5. 5.

    https://support.polar.com/e_manuals/H7_Heart_Rate_Sensor/Polar_H7_Heart_Rate_Sensor_accessory_manual_English.pdf.

  6. 6.

    https://www.polar.com/en/sensors/h10-heart-rate-sensor.

  7. 7.

    https://support.empatica.com/hc/en-us/articles/206373545-Download-and-install-the-E4-manager-on -your-Windows-computer.

  8. 8.

    https://play.google.com/store/apps/details?id=com.j_ware.polarsensorlogger &hl=en &gl=US.

References

  1. Alchieri, L., et al.: On the impact of lateralization in physiological signals from wearable sensors (2022)

    Google Scholar 

  2. Alecci, L., et al.: On the mismatch between measured and perceived sleep quality. In: Proceedings of the 2022 UbiComp (2022). https://doi.org/10.1145/3544793.3563412

  3. Altini, M., et al.: The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the oura ring. Sensors 21(13) (2021)

    Google Scholar 

  4. Armstrong, R.A.: When to use the B onferroni correction. Ophthalmic Physiol. Opt. 34(5) (2014)

    Google Scholar 

  5. Assaf, M., Rizzotti-Kaddouri, A., Punceva, M.: Sleep detection using physiological signals from a wearable device. In: Inácio, P.R.M., Duarte, A., Fazendeiro, P., Pombo, N. (eds.) HealthyIoT 2018. EICC, pp. 23–37. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30335-8_3

    Chapter  Google Scholar 

  6. Barika, R., et al.: A smart sleep apnea detection service. In: 17th International Conference on CM. The British Institute of NDT (2021)

    Google Scholar 

  7. Bland, J.M., et al.: Measuring agreement in method comparison studies. Stat. Methods Med. Res. 8(2) (1999)

    Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1) (2001)

    Google Scholar 

  9. Brodersen, K.H., et al.: The balanced accuracy and its posterior distribution. In: 20th ICPR. IEEE (2010)

    Google Scholar 

  10. Buysse, D.J., et al.: The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28(2), 193–213 (1989)

    Article  Google Scholar 

  11. Cakmak, A.S., et al.: An unbiased, efficient sleep-wake detection algorithm for a population with sleep disorders: change point decoder. Sleep 43(8) (2020)

    Google Scholar 

  12. Carlozzi, N.E., et al.: Daily variation in sleep quality is associated with health-related quality of life in people with spinal cord injury. Arch. Phys. Med. Rehabil. 103(2) (2022)

    Google Scholar 

  13. Chawla, N.V., et al.: Smote: synthetic minority over-sampling technique. JAIR 16 (2002)

    Google Scholar 

  14. Chee, N.I., et al.: Multi-night validation of a sleep tracking ring in adolescents compared with a research actigraph and polysomnography. Nat. Sci. Sleep 13 (2021)

    Google Scholar 

  15. Chinoy, E.D., et al.: Performance of four commercial wearable sleep-tracking devices tested under unrestricted conditions at home in healthy young adults. Nat. Sci. Sleep 14 (2022)

    Google Scholar 

  16. Cliff, N.: Dominance statistics: ordinal analyses to answer ordinal questions. Psychol. Bull. 114(3), 494 (1993)

    Article  Google Scholar 

  17. Cole, C.R., Blackstone, E.H., Pashkow, F.J., Snader, C.E., Lauer, M.S.: Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 341(18), 1351–1357 (1999)

    Article  Google Scholar 

  18. Conover, W.J.: Practical Nonparametric Statistics, vol. 350. Wiley, Hoboken (1999)

    Google Scholar 

  19. Cortes, C., et al.: Support-vector networks. Mach. Learn. 20(3) (1995)

    Google Scholar 

  20. Duda, R.O., et al.: Pattern Classification and Scene Analysis, vol. 3. Wiley, New York (1973)

    Google Scholar 

  21. Field, A., et al.: How to Design and Report Experiments. Sage (2002)

    Google Scholar 

  22. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  Google Scholar 

  23. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stati. (2001)

    Google Scholar 

  24. Gardner, M.W., et al.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15) (1998)

    Google Scholar 

  25. Gashi, S., et al.: Using unobtrusive wearable sensors to measure the physiological synchrony between presenters and audience members. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(1), 1–19 (2019)

    Article  Google Scholar 

  26. Gashi, S., et al.: The role of model personalization for sleep stage and sleep quality recognition using wearables. IEEE Pervasive Comput. 21, 69–77 (2022)

    Article  Google Scholar 

  27. Ghorbani, S., et al.: Multi-night at-home evaluation of improved sleep detection and classification with a memory-enhanced consumer sleep tracker. Nat. Sci. Sleep 14 (2022)

    Google Scholar 

  28. Gilgen-Ammann, R., et al.: RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. EJAP 119 (2019)

    Google Scholar 

  29. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, Heidelberg (2009)

    Book  Google Scholar 

  30. Hellhammer, J., et al.: The physiological response to trier social stress test relates to subjective measures of stress during but not before or after the test. Psychoneuroendocrinology 37(1), 119–124 (2012)

    Article  Google Scholar 

  31. Hernandez, J., Morris, R.R., Picard, R.W.: Call center stress recognition with person-specific models. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 125–134. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24600-5_16

    Chapter  Google Scholar 

  32. Imtiaz, S.A.: A systematic review of sensing technologies for wearable sleep staging. Sensors 21(5) (2021)

    Google Scholar 

  33. Joshi, A., et al.: Likert scale: explored and explained. Br. J. Appl. Sci. Technol. 7(4) (2015)

    Google Scholar 

  34. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press (2020)

    Google Scholar 

  35. Kendall, M.G., et al.: The Advanced Theory of Statistics. The Advanced Theory of Statistics, 2nd edn (1946)

    Google Scholar 

  36. Kromrey, J.D., et al.: Analysis options for testing group differences on ordered categorical variables: an empirical investigation of type I error control and statistical power. MLRV 25(1) (1998)

    Google Scholar 

  37. Mehrabadi, M.A., et al.: Sleep tracking of a commercially available smart ring and smartwatch against medical-grade actigraphy in everyday settings: instrument validation study. JMIR mHealth uHealth 8(11) (2020)

    Google Scholar 

  38. Miller, D.J., et al.: A validation study of a commercial wearable device to automatically detect and estimate sleep. Biosensors 11(6) (2021)

    Google Scholar 

  39. Min, J.K., Doryab, A., Wiese, J., Amini, S., Zimmerman, J., Hong, J.I.: Toss‘n’turn: smartphone as sleep and sleep quality detector. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 477–486 (2014)

    Google Scholar 

  40. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12 (2011)

    Google Scholar 

  41. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  42. Raskovic, D., et al.: Medical monitoring applications for wearable computing. Comput. J. 47(4), 495–504 (2004)

    Article  Google Scholar 

  43. Reinhardt, T., et al.: Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 198(1), 106–111 (2012)

    Article  Google Scholar 

  44. Roberts, D.M., et al.: Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep 43(7) (2020)

    Google Scholar 

  45. Sano, A., et al.: Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In: Proceedings of the IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN 2015). IEEE (2015)

    Google Scholar 

  46. Sano, A., et al.: Multimodal ambulatory sleep detection using LSTM recurrent neural networks. IEEE J. Biomed. Health Inform. 23(4), 1607–1617 (2019)

    Article  Google Scholar 

  47. Schmidt, P., Reiss, A., Dürichen, R., Van Laerhoven, K.: Wearable-based affect recognition—a review. Sensors 19(19), 4079 (2019)

    Article  Google Scholar 

  48. Scott, H., et al.: The development and accuracy of the THIM wearable device for estimating sleep and wakefulness. Nat. Sci. Sleep 13 (2021)

    Google Scholar 

  49. Siirtola, P., et al.: Using sleep time data from wearable sensors for early detection of migraine attacks. Sensors 18(5) (2018)

    Google Scholar 

  50. Stone, J.D., et al.: Evaluations of commercial sleep technologies for objective monitoring during routine sleeping conditions. Nat. Sci. Sleep 12 (2020)

    Google Scholar 

  51. Swain, P.H., et al.: The decision tree classifier: design and potential. IEEE Trans. Geosci. Electron. 15(3) (1977)

    Google Scholar 

  52. Taylor, S.A., et al.: Personalized multitask learning for predicting tomorrow’s mood, stress, and health. IEEE Trans. Affect. Comput. 11, 200–213 (2017)

    Article  Google Scholar 

  53. Williams, C.K., et al.: Gaussian Processes for Machine Learning, vol. 2. MIT Press, Cambridge (2006)

    Google Scholar 

  54. Yan, S., et al.: Estimating individualized daily self-reported affect with wearable sensors. In: 2019 IEEE ICHI (2019)

    Google Scholar 

Download references

Acknowledgement

This contribution is supported by the Swiss National Science Foundation (SNSF) through the grant 205121 _197242 for the project “PROSELF: Semi-automated Self-Tracking Systems to Improve Personal Productivity”. Shkurta Gashi is supported by an ETH AI Center postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouran Abdalazim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdalazim, N., Larraza, J.A.A., Alchieri, L., Alecci, L., Santini, S., Gashi, S. (2023). Heart Rate During Sleep Measured Using Finger-, Wrist- and Chest-Worn Devices: A Comparison Study. In: Tsanas, A., Triantafyllidis, A. (eds) Pervasive Computing Technologies for Healthcare. PH 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-34586-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34586-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34585-2

  • Online ISBN: 978-3-031-34586-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics