Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-priority Graph Sparsification

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13889))

Included in the following conference series:

Abstract

A sparsification of a given graph G is a sparser graph (typically a subgraph) which aims to approximate or preserve some property of G. Examples of sparsifications include but are not limited to spanning trees, Steiner trees, spanners, emulators, and distance preservers. Each vertex has the same priority in all of these problems. However, real-world graphs typically assign different “priorities” or “levels” to different vertices, in which higher-priority vertices require higher-quality connectivity between them. Multi-priority variants of the Steiner tree problem have been studied previously, but have been much less studied for other types of sparsifiers. In this paper, we define a generalized multi-priority problem and present a rounding-up approach that can be used for a variety of graph sparsifications. Our analysis provides a systematic way to compute approximate solutions to multi-priority variants of a wide range of graph sparsification problems given access to a single-priority subroutine.

Supported in part by NSF grants CCF-1740858, CCF-1712119, and CCF-2212130.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A detailed discussion can be found in the full version [8].

References

  1. Abboud, A., Bodwin, G.: Lower bound amplification theorems for graph spanners. In: Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 841–856 (2016)

    Google Scholar 

  2. Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. J. ACM (JACM) 64(4), 28 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ahmed, A.R., et al.: Multi-level Steiner trees. In: 17th International Symposium on Experimental Algorithms (SEA), pp. 15:1–15:14 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.15

  4. Ahmed, R., Bodwin, G., Hamm, K., Kobourov, S., Spence, R.: On additive spanners in weighted graphs with local error. In: Kowalik, Ł, Pilipczuk, M., Rzążewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 361–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_28

    Chapter  Google Scholar 

  5. Ahmed, R., et al.: Graph spanners: a tutorial review. Comput. Sci. Rev. 37, 100253 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ahmed, R., Bodwin, G., Sahneh, F.D., Hamm, K., Kobourov, S., Spence, R.: Multi-level weighted additive spanners. In: Coudert, D., Natale, E. (eds.) 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 190, pp. 16:1–16:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.SEA.2021.16. https://drops.dagstuhl.de/opus/volltexte/2021/13788

  7. Ahmed, R., Hamm, K., Latifi Jebelli, M.J., Kobourov, S., Sahneh, F.D., Spence, R.: Approximation algorithms and an integer program for multi-level graph spanners. In: Kotsireas, I., Pardalos, P., Parsopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 541–562. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34029-2_35

    Chapter  Google Scholar 

  8. Ahmed, R., Hamm, K., Kobourov, S., Jebelli, M.J.L., Sahneh, F.D., Spence, R.: Multi-priority graph sparsification. arXiv preprint arXiv:2301.12563 (2023)

  9. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181 (1999). https://doi.org/10.1137/S0097539796303421

    Article  MathSciNet  Google Scholar 

  10. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308

    Article  MathSciNet  Google Scholar 

  11. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Modeling and heuristic worst-case performance analysis of the two-level network design problem. Manag. Sci. 40(7), 846–867 (1994). https://doi.org/10.1287/mnsc.40.7.846

    Article  Google Scholar 

  12. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (\(\alpha \), \(\beta \))-spanners. ACM Trans. Algorithms (TALG) 7(1), 5 (2010)

    MathSciNet  Google Scholar 

  13. Bodwin, G.: New results on linear size distance preservers. SIAM J. Comput. 50(2), 662–673 (2021). https://doi.org/10.1137/19M123662X

    Article  MathSciNet  Google Scholar 

  14. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013). https://doi.org/10.1145/2432622.2432628

  15. Charikar, M., Naor, J., Schieber, B.: Resource optimization in QoS multicast routing of real-time multimedia. IEEE/ACM Trans. Netw. 12(2), 340–348 (2004). https://doi.org/10.1109/TNET.2004.826288

    Article  Google Scholar 

  16. Chechik, S.: New additive spanners. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 498–512. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  17. Chechik, S., Wulff-Nilsen, C.: Near-optimal light spanners. ACM Trans. Algorithms (TALG) 14(3), 33 (2018)

    MathSciNet  Google Scholar 

  18. Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability of some network design problems. ACM Trans. Algorithms 4(2), 23:1–23:17 (2008). https://doi.org/10.1145/1361192.1361200

  19. Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths and PRAM distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422 (2019)

  20. Elkin, M., Gitlitz, Y., Neiman, O.: Improved weighted additive spanners. arXiv preprint arXiv:2008.09877 (2020)

  21. Erdős, P.: Extremal problems in graph theory. In: Proceedings of the Symposium on Theory of Graphs and its Applications, p. 2936 (1963)

    Google Scholar 

  22. Hauptmann, M., Karpiński, M.: A compendium on Steiner tree problems. Inst. für Informatik (2013)

    Google Scholar 

  23. Karpinski, M., Mandoiu, I.I., Olshevsky, A., Zelikovsky, A.: Improved approximation algorithms for the quality of service multicast tree problem. Algorithmica 42(2), 109–120 (2005). https://doi.org/10.1007/s00453-004-1133-y

    Article  MathSciNet  Google Scholar 

  24. Kavitha, T.: New pairwise spanners. Theory Comput. Syst. 61(4), 1011–1036 (2016). https://doi.org/10.1007/s00224-016-9736-7

    Article  MathSciNet  Google Scholar 

  25. Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 749–756. ACM, New York (2006). https://doi.org/10.1145/1132516.1132620. http://doi.acm.org/10.1145/1132516.1132620

  26. Knudsen, M.B.T.: Additive spanners: a simple construction. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 277–281. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_24

    Chapter  Google Scholar 

  27. Laekhanukit, B.: An improved approximation algorithm for minimum-cost subset k-connectivity. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_2

    Chapter  Google Scholar 

  28. Le, H.: A PTAS for subset TSP in minor-free graphs. In: Proceedings of the Thirty-First Annual. Society for Industrial and Applied Mathematics, USA (2020)

    Google Scholar 

  29. Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable bifamilies and spider-cover decompositions. In: IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS 2009), Los Alamitos, CA, USA. IEEE Computer Society (2009). https://doi.org/10.1109/FOCS.2009.9. https://doi.ieeecomputersociety.org/10.1109/FOCS.2009.9

  30. Nutov, Z.: Approximating subset k-connectivity problems. J. Discret. Algorithms 17, 51–59 (2012)

    Article  MathSciNet  Google Scholar 

  31. Sahneh, F.D., Kobourov, S., Spence, R.: Approximation algorithms for the priority Steiner tree problem. In: 27th International Computing and Combinatorics Conference (COCOON) (2021). http://arxiv.org/abs/1811.11700

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyan Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, R., Hamm, K., Kobourov, S., Jebelli, M.J.L., Sahneh, F.D., Spence, R. (2023). Multi-priority Graph Sparsification. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34347-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34346-9

  • Online ISBN: 978-3-031-34347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics