Abstract
A sparsification of a given graph G is a sparser graph (typically a subgraph) which aims to approximate or preserve some property of G. Examples of sparsifications include but are not limited to spanning trees, Steiner trees, spanners, emulators, and distance preservers. Each vertex has the same priority in all of these problems. However, real-world graphs typically assign different “priorities” or “levels” to different vertices, in which higher-priority vertices require higher-quality connectivity between them. Multi-priority variants of the Steiner tree problem have been studied previously, but have been much less studied for other types of sparsifiers. In this paper, we define a generalized multi-priority problem and present a rounding-up approach that can be used for a variety of graph sparsifications. Our analysis provides a systematic way to compute approximate solutions to multi-priority variants of a wide range of graph sparsification problems given access to a single-priority subroutine.
Supported in part by NSF grants CCF-1740858, CCF-1712119, and CCF-2212130.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A detailed discussion can be found in the full version [8].
References
Abboud, A., Bodwin, G.: Lower bound amplification theorems for graph spanners. In: Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 841–856 (2016)
Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. J. ACM (JACM) 64(4), 28 (2017)
Ahmed, A.R., et al.: Multi-level Steiner trees. In: 17th International Symposium on Experimental Algorithms (SEA), pp. 15:1–15:14 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.15
Ahmed, R., Bodwin, G., Hamm, K., Kobourov, S., Spence, R.: On additive spanners in weighted graphs with local error. In: Kowalik, Ł, Pilipczuk, M., Rzążewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 361–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_28
Ahmed, R., et al.: Graph spanners: a tutorial review. Comput. Sci. Rev. 37, 100253 (2020)
Ahmed, R., Bodwin, G., Sahneh, F.D., Hamm, K., Kobourov, S., Spence, R.: Multi-level weighted additive spanners. In: Coudert, D., Natale, E. (eds.) 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 190, pp. 16:1–16:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.SEA.2021.16. https://drops.dagstuhl.de/opus/volltexte/2021/13788
Ahmed, R., Hamm, K., Latifi Jebelli, M.J., Kobourov, S., Sahneh, F.D., Spence, R.: Approximation algorithms and an integer program for multi-level graph spanners. In: Kotsireas, I., Pardalos, P., Parsopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 541–562. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34029-2_35
Ahmed, R., Hamm, K., Kobourov, S., Jebelli, M.J.L., Sahneh, F.D., Spence, R.: Multi-priority graph sparsification. arXiv preprint arXiv:2301.12563 (2023)
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181 (1999). https://doi.org/10.1137/S0097539796303421
Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308
Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Modeling and heuristic worst-case performance analysis of the two-level network design problem. Manag. Sci. 40(7), 846–867 (1994). https://doi.org/10.1287/mnsc.40.7.846
Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (\(\alpha \), \(\beta \))-spanners. ACM Trans. Algorithms (TALG) 7(1), 5 (2010)
Bodwin, G.: New results on linear size distance preservers. SIAM J. Comput. 50(2), 662–673 (2021). https://doi.org/10.1137/19M123662X
Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013). https://doi.org/10.1145/2432622.2432628
Charikar, M., Naor, J., Schieber, B.: Resource optimization in QoS multicast routing of real-time multimedia. IEEE/ACM Trans. Netw. 12(2), 340–348 (2004). https://doi.org/10.1109/TNET.2004.826288
Chechik, S.: New additive spanners. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 498–512. Society for Industrial and Applied Mathematics (2013)
Chechik, S., Wulff-Nilsen, C.: Near-optimal light spanners. ACM Trans. Algorithms (TALG) 14(3), 33 (2018)
Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability of some network design problems. ACM Trans. Algorithms 4(2), 23:1–23:17 (2008). https://doi.org/10.1145/1361192.1361200
Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths and PRAM distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422 (2019)
Elkin, M., Gitlitz, Y., Neiman, O.: Improved weighted additive spanners. arXiv preprint arXiv:2008.09877 (2020)
Erdős, P.: Extremal problems in graph theory. In: Proceedings of the Symposium on Theory of Graphs and its Applications, p. 2936 (1963)
Hauptmann, M., Karpiński, M.: A compendium on Steiner tree problems. Inst. für Informatik (2013)
Karpinski, M., Mandoiu, I.I., Olshevsky, A., Zelikovsky, A.: Improved approximation algorithms for the quality of service multicast tree problem. Algorithmica 42(2), 109–120 (2005). https://doi.org/10.1007/s00453-004-1133-y
Kavitha, T.: New pairwise spanners. Theory Comput. Syst. 61(4), 1011–1036 (2016). https://doi.org/10.1007/s00224-016-9736-7
Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 749–756. ACM, New York (2006). https://doi.org/10.1145/1132516.1132620. http://doi.acm.org/10.1145/1132516.1132620
Knudsen, M.B.T.: Additive spanners: a simple construction. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 277–281. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_24
Laekhanukit, B.: An improved approximation algorithm for minimum-cost subset k-connectivity. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_2
Le, H.: A PTAS for subset TSP in minor-free graphs. In: Proceedings of the Thirty-First Annual. Society for Industrial and Applied Mathematics, USA (2020)
Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable bifamilies and spider-cover decompositions. In: IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS 2009), Los Alamitos, CA, USA. IEEE Computer Society (2009). https://doi.org/10.1109/FOCS.2009.9. https://doi.ieeecomputersociety.org/10.1109/FOCS.2009.9
Nutov, Z.: Approximating subset k-connectivity problems. J. Discret. Algorithms 17, 51–59 (2012)
Sahneh, F.D., Kobourov, S., Spence, R.: Approximation algorithms for the priority Steiner tree problem. In: 27th International Computing and Combinatorics Conference (COCOON) (2021). http://arxiv.org/abs/1811.11700
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ahmed, R., Hamm, K., Kobourov, S., Jebelli, M.J.L., Sahneh, F.D., Spence, R. (2023). Multi-priority Graph Sparsification. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-34347-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34346-9
Online ISBN: 978-3-031-34347-6
eBook Packages: Computer ScienceComputer Science (R0)