Nothing Special   »   [go: up one dir, main page]

Skip to main content

Batch Integrated Gradients: Explanations for Temporal Electronic Health Records

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2023)

Abstract

eXplainable Artifical Intelligence (XAI) is integral for the usability of black-box models in high-risk domains. Many problems in such domains are concerned with analysing temporal data. Namely, we must consider a sequence of instances that occur in time, and explain why the prediction transitions from one time point to the next. Currently, XAI techniques do not leverage the temporal nature of data and instead treat each instance independently. Therefore, we introduce a new approach advancing the Integrated Gradients method developed in the literature, namely the Batch-Integrated Gradients (Batch-IG) technique that (1) produces explanations over a temporal batch for instance-to-instance state transitions and (2) takes into account features that change over time. In Electronic Health Records (EHRs), we see patient records can be stored in temporal sequences. Thus, we demonstrate Batch-Integrated Gradients in producing explanations over a temporal sequence that satisfy proposed properties corresponding to XAI for EHR data.

Jamie Duell is supported by the UKRI AIMLAC CDT, funded by grant EP/S023992/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://simulacrum.healthdatainsight.org.uk/ - The Simulacrum is a synthetic dataset developed by Health Data Insight CiC derived from anonymous cancer data provided by the National Cancer Registration and Analysis Service, which is part of Public Health England.

References

  1. Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V.I.: Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inf. Decis. Making 20(1), 310 (2020)

    Google Scholar 

  2. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A temporal pattern mining approach for classifying electronic health record data. ACM Trans. Intell. Syst. Technol. 4(4), 2508044 (2013). https://doi.org/10.1145/2508037.2508044

  3. Loh, H.W., Ooi, C.P., Seoni, S., Barua, P.D., Molinari, F., Acharya, U.R.: Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comput. Methods Programs Biomed. 226, 107161 (2022)

    Article  Google Scholar 

  4. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Advances in NeurIPS 30: Annual Conference on NeurIPS, pp. 4765–4774 (2017)

    Google Scholar 

  5. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. KDD 2016, Association for Computing Machinery, New York, NY, USA (2016)

    Google Scholar 

  6. Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A.: Towards a rigorous evaluation of XAI methods on time series. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4197–4201 (2019). https://doi.org/10.1109/ICCVW.2019.00516

  7. Selbst, A.D., Powles, J.: Meaningful information and the right to explanation. Int. Data Priv. Law 7(4), 233–242 (2017)

    Google Scholar 

  8. Simic, I., Sabol, V., Veas, E.E.: XAI methods for neural time series classification: a brief review. CoRR abs/2108.08009 (2021). https://arxiv.org/abs/2108.08009

  9. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML2017: Proceedings of the 34th International Conference on Machine Learning, pp. 3319–3328. JMLR.org (2017)

    Google Scholar 

  10. Veerappa, M., Anneken, M., Burkart, N., Huber, M.F.: Validation of XAI explanations for multivariate time series classification in the maritime domain. J. Comput. Sci. 58, 101539 (2022). https://doi.org/10.1016/j.jocs.2021.101539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Duell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duell, J., Fan, X., Fu, H., Seisenberger, M. (2023). Batch Integrated Gradients: Explanations for Temporal Electronic Health Records. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34344-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34343-8

  • Online ISBN: 978-3-031-34344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics