Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling Others as a Player in Non-cooperative Game for Multi-agent Coordination

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1826))

  • 888 Accesses

Abstract

An modeling other agents (MOA) constructs a model of other agents in every agent. It enables the agents to predict the actions of other agents and achieve coordinated and effective interactions in multi-agent systems. However, the relationship between the executed and predicted actions of agents is vague and diverse. To clarify the relationship, we proposed a method by which an agent through communications constructs its MOA using the historical data of other agents and asymmetrically treats itself and its MOA in a non-cooperative game to obtain Stackelberg equilibrium (SE). Subsequently, the SE are used to choose actions. We experimentally demonstrated that, in a partially observable and mixed cooperative-competitive environment, agents using our method with reinforcement learning could establish better coordination and engage in behaviors that are more appropriate compared to conventional methods. We then analyzed the coordinated interaction structure generated in the trained network to clarify the relationship between individual agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, S.V., Stone, P.: Autonomous agents modelling other agents: a comprehensive survey and open problems. Artif. Intell. 258, 66–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

    Google Scholar 

  3. Haarnoja, T., Tang, H., Abbeel, P., Levine, S.: Reinforcement learning with deep energy-based policies. In: International Conference on Machine Learning, pp. 1352–1361. PMLR (2017)

    Google Scholar 

  4. He, H., Boyd-Graber, J., Kwok, K., Daumé III, H.: Opponent modeling in deep reinforcement learning. In: International Conference on Machine Learning, pp. 1804–1813. PMLR (2016)

    Google Scholar 

  5. Hong, Z.W., Su, S.Y., Shann, T.Y., Chang, Y.H., Lee, C.Y.: A deep policy inference Q-network for multi-agent systems. arXiv preprint arXiv:1712.07893 (2017)

  6. Hu, J., Wellman, M.P.: Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 4, 1039–1069 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Huhns, M.N.: Distributed Artificial Intelligence: Volume I. Elsevier (1987)

    Google Scholar 

  8. Jaques, N., et al.: Social influence as intrinsic motivation for multi-agent deep reinforcement learning. In: International Conference on Machine Learning, pp. 3040–3049. PMLR (2019)

    Google Scholar 

  9. Jiang, J., Lu, Z.: Learning attentional communication for multi-agent cooperation. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  10. Lanctot, M., et al.: A unified game-theoretic approach to multiagent reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  12. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Machine Learning Proceedings 1994, pp. 157–163. Elsevier (1994)

    Google Scholar 

  13. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Peng, P., et al.: Multiagent bidirectionally-coordinated nets: emergence of human-level coordination in learning to play StarCraft combat games. arXiv preprint arXiv:1703.10069 (2017)

  15. Rashid, T., Samvelyan, M., De Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: Monotonic value function factorisation for deep multi-agent reinforcement learning. J. Mach. Learn. Res. 21(1), 1–51 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  17. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  18. Semsar-Kazerooni, E., Khorasani, K.: Multi-agent team cooperation: a game theory approach. Automatica 45(10), 2205–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)

    Article  Google Scholar 

  20. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  21. Tuyls, K., Weiss, G.: Multiagent learning: basics, challenges, and prospects. AI Mag. 33(3), 41 (2012)

    Google Scholar 

  22. Von Stackelberg, H.: Market Structure and Equilibrium. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12586-7

  23. Wang, X., et al.: SCC: an efficient deep reinforcement learning agent mastering the game of StarCraft II. In: International Conference on Machine Learning, pp. 10905–10915. PMLR (2021)

    Google Scholar 

  24. Yang, Y., Wang, J.: An overview of multi-agent reinforcement learning from game theoretical perspective. arXiv preprint arXiv:2011.00583 (2020)

  25. Zhang, H., et al.: Bi-level actor-critic for multi-agent coordination. In: The 34th AAAI Conference on Artificial Intelligence, pp. 7325–7332. AAAI Press (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, J., Sugawara, T. (2023). Modeling Others as a Player in Non-cooperative Game for Multi-agent Coordination. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34204-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34203-5

  • Online ISBN: 978-3-031-34204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics