Abstract
Curvilinear structure segmentation is important in medical imaging, quantifying structures such as vessels, airways, neurons, or organ boundaries in 2D slices. Segmentation via pixel-wise classification often fails to capture the small and low-contrast curvilinear structures. Prior topological information is typically used to address this problem, often at an expensive computational cost, and sometimes requiring prior knowledge of the expected topology.
We present DTU-Net, a data-driven approach to topology-preserving curvilinear structure segmentation. DTU-Net consists of two sequential, lightweight U-Nets, dedicated to texture and topology, respectively. While the texture net makes a coarse prediction using image texture information, the topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits in the structure. We conduct experiments on a challenging multi-class ultrasound scan segmentation dataset as well as a well-known retinal imaging dataset. Results show that our model outperforms existing approaches in both pixel-wise segmentation accuracy and topological continuity, with no need for prior topological knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5(01n02), 75–91 (1995)
Chen, W., et al.: TR-GAN: topology ranking GAN with triplet loss for retinal artery/vein classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 616–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_59
Clough, J., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8766–8778 (2020)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE CVPR (2018)
Hu, X., Wang, Y., Li, F., Samaras, D., Chen, C.: Topology-aware segmentation using discrete Morse theory. In: ICLR (2021)
Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: NeurIPS, vol. 32 (2019)
Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: IterNet: retinal image segmentation utilizing structural redundancy in vessel networks. In: IEEE WACV, pp. 3656–3665 (2020)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE ICCV (2017)
Mosinska, A., Marquez-Neila, P., Koziński, M., Fua, P.: Beyond the pixel-wise loss for topology-aware delineation. In: IEEE CVPR (2018)
Mou, L., et al.: CS2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sasaki, K., Iizuka, S., Simo-Serra, E., Ishikawa, H.: Joint gap detection and inpainting of line drawings. In: IEEE CVPR (2017)
Schapire, R.E.: A brief introduction to boosting. In: IJCAI, vol. 99, pp. 1401–1406 (1999)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE CVPR, pp. 815–823 (2015)
Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: IEEE CVPR (2021)
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE TMI 23(4), 501–509 (2004)
Wu, L., Cheng, J.Z., Li, S., Lei, B., Wang, T., Ni, D.: FUIQA: fetal ultrasound image quality assessment with deep convolutional networks. IEEE Trans. Cybern. 47(5), 1336–1349 (2017)
Acknowledgements
This work was supported by the DIREC project EXPLAIN-ME(9142-00001B), the Novo Nordisk Foundation through the Center for Basic Machine Learning Research in Life Science (NNF20OC0062606), and the Pioneer Centre for AI, DNRF grant nr P1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, M. et al. (2023). DTU-Net: Learning Topological Similarity for Curvilinear Structure Segmentation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_50
Download citation
DOI: https://doi.org/10.1007/978-3-031-34048-2_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34047-5
Online ISBN: 978-3-031-34048-2
eBook Packages: Computer ScienceComputer Science (R0)