Nothing Special   »   [go: up one dir, main page]

Skip to main content

Source-Free Domain Adaptation for Medical Image Segmentation via Selectively Updated Mean Teacher

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Automated medical image segmentation is valuable for disease diagnosis and prognosis, and it has achieved promising performance with deep neural networks. However, a segmentation model trained on a source dataset may not perform well on a different target dataset when the distribution shift or even modality alteration exists between them. To address this problem, domain adaptation techniques can be applied to train the model with the help of the unannotated target dataset. Often when the target data is available, only a segmentation model trained on the source dataset is provided without the source data, and in this case, source-free domain adaptation (SFDA) is needed. In this work, we focus on the development of SFDA techniques for medical image segmentation, where the given source model is updated based on the target data. Since no annotations are available for the target dataset, we propose to leverage the consistency of predictions on the target data when different perturbations are made, and adopt the mean teacher framework that can effectively exploit the consistency. Moreover, we assume that the update of the entire model in vanilla mean teacher is suboptimal because when no annotated data is available the knowledge learned for segmentation in the source model can be easily forgotten. Therefore, we propose selectively updated mean teacher (SUMT), which seeks to adapt the source model parameters that are sensitive to domain variance and retain the parameters that are invariant to domains. In SUMT, we develop a progressive layer update strategy with channel-wise weight restoration that alleviates forgetting. To evaluate the proposed method, experiments were performed on three datasets, where the source and target data used different modalities for segmentation, or their images were acquired at different sites. The results show that our method improves the segmentation accuracy compared with other SFDA approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Noise perturbation and random flips are applied before the teacher or student prediction as in [16].

References

  1. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_48

    Chapter  Google Scholar 

  2. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 01, pp. 865–872 (2019)

    Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: the MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)

    Article  Google Scholar 

  5. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  6. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096-2030 (2016)

    Google Scholar 

  7. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  8. Gut, D., Tabor, Z., Szymkowski, M., Rozynek, M., Kucybała, I., Wojciechowski, W.: Benchmarking of deep architectures for segmentation of medical images. IEEE Trans. Med. Imaging 41(11), 3231–3241 (2022)

    Article  Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML Workshop on Challenges in Representation Learning (2013)

    Google Scholar 

  11. Li, Y., Wang, N., Shi, J., Hou, X., Liu, J.: Adaptive batch normalization for practical domain adaptation. Pattern Recogn. 80, 109–117 (2018)

    Article  Google Scholar 

  12. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 6028–6039 (2020)

    Google Scholar 

  13. Liu, X., Xing, F., Yang, C., El Fakhri, G., Woo, J.: Adapting off-the-shelf source segmenter for target medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 549–559. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_51

    Chapter  Google Scholar 

  14. Liu, Y.C., Ma, C.Y., Kira, Z.: Unbiased teacher v2: semi-supervised object detection for anchor-free and anchor-based detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9819–9828 (2022)

    Google Scholar 

  15. Lu, Q., Ye, C.: Knowledge transfer for few-shot segmentation of novel white matter tracts. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 216–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_17

    Chapter  Google Scholar 

  16. Luo, X.: SSL4MIS (2020). https://github.com/HiLab-git/SSL4MIS

  17. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  18. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  23. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  24. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: TENT: fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)

Download references

Acknowledgement

This work is supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Z., Zhang, X., Ye, C. (2023). Source-Free Domain Adaptation for Medical Image Segmentation via Selectively Updated Mean Teacher. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics