Nothing Special   »   [go: up one dir, main page]

Skip to main content

Blended Enriched Virtual Model for the Prediction of Students’ Performance Using Probablistic Based Model

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2020)

Abstract

The online mode of learning is gaining popularity in the education field due to various reasons. The rapid expansion in the practice of web-based technologies have made educators to take advantage of ICT based learning in Higher Education Institutes worldwide in emergency situations. The occurrence of novel COVID-19 pandemic shifts the ongoing physical education system from face-to-face learning to virtual learning worldwide. Virtual learning is not sufficient for the fulfillment of undergraduate students learning requirments as they require practical knowledge as well. Therefore, higher education institutes need the integration of blended learning methods for the improvement of students learning outcomes in their respective field of studies. Blended learning is the latest trend of implementing online learning strategy along with other e-learning tools. This research paper focuses on the development of a blended virtual model using a probabilistic model i.e. Bayesian network classifier for the prediction of students academic performance. The blended enriched virtual model is adapted that includes online and offline learning. Online learning includes online lectures, chat collaborations and online courses. Whereas offline face to face learning includes physical classroom lectures and lab sessions for practical work. The proposed BN model is applied to undergraduate computing students for analysis of learning outcomes of Data Structures and Algorithms subject. According to the findings of proposed BN model that if students properly attend the classroom lectures followed by their lab practical in Face-to-face learning and the proper online learning activities like lectures, chats and online courses, the learning outcomes of the students may be improved and the proposed BN model also reports the accuracy of about 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://genie-academic.software.informer.com/

References

  1. Bruen, C.: A Development framework for re-useable learning resources for different learning styles and requirements. In: E-Learn: Association for the Advancement of Computing in Education (AACE) World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, pp. 1238–1241 (2002)

    Google Scholar 

  2. Panigrahi, C.M.A.: Use of artificial intelligence in education. Manag. Account. 55, 64–67 (2020)

    Google Scholar 

  3. Tayyaba, S., Khan, S.A., Ashraf, M.W., Balas, V.E.: Home automation using IOT. In: Balas, V.E., Kumar, R., Srivastava, R. (eds.) Recent Trends and Advances in Artificial Intelligence and Internet of Things. ISRL, vol. 172, pp. 343–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32644-9_31

    Chapter  Google Scholar 

  4. Tayyaba, S., Ashraf, M.W., Alquthami, T., Ahmad, Z., Manzoor, S.: Fuzzy-based approach using IoT devices for smart home to assist blind people for navigation. Sensors 20(13), 36–74 (2020)

    Article  Google Scholar 

  5. Baker, R.S., Yacef, K.: The state of educational data mining in 2009: a review and future visions. JEDM J. Educ. Data Min. 1(1), 3–17 (2009)

    Google Scholar 

  6. Strang, K.D.: Can online student performance be forecasted by learning analytics? Int. J. Technol. Enhanced Learn. 8(1), 26–47 (2016)

    Article  Google Scholar 

  7. Moraes, P., Teixeira, L.: Willow: A tool for interactive programming visualization to help in the data structures and algorithms teaching-learning process. In: XXXIII Brazilian Symposium on Software Engineering. SBC, pp. 553–558 (2020)

    Google Scholar 

  8. Bhagate, S., Nuli, U.: Innovative methods for teaching data structures and algorithms. J. Eng. Educ. Transformations (2016)

    Google Scholar 

  9. Mahaye, N.E.: The impact of COVID-19 pandemic on education: navigating forward the pedagogy of blended learning. Res. Online 5, 4–9 (2020)

    Google Scholar 

  10. Stevens, M., Rice, M.: Inquiring into presence as support for student learning in a blended learning classroom. J. Online Learn. Res. 2(4), 447–473 (2016)

    Google Scholar 

  11. Kafer, K.: The rise of K-12 blended learning in Colorado. IP-5–2013). Denver, CO: Independence Institute (2013)

    Google Scholar 

  12. Loftus, M., Madden, M.G.: A pedagogy of data and artificial intelligence for student subjectification. Teach. High. Educ. 25(4), 456–475 (2020)

    Article  Google Scholar 

  13. Hussain, A., Abbasi, A.R., Afzulpurkar, N.: Detecting & interpreting self-manipulating hand movements for student’s affect prediction. Hum.-Centric Comput. Inf. Sci. 2(1), 14 (2012)

    Article  Google Scholar 

  14. Wu, L.: Student model construction of intelligent teaching system based on Bayesian network. Pers. Ubiquit. Comput. 24, 1–10 (2019)

    Google Scholar 

  15. Lakho, S., Jalbani, A.H., Vighio, M.S., Memon, I.A., Soomro, S.S.: Decision support system for hepatitis disease diagnosis using bayesian network. Sukkur IBA J. Comput. Math. Sci. 1(2), 11–19 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamshad Lakho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lakho, S., Jalbani, A.H., Memon, I.A., Soomro, S.S., Chandio, A.A. (2023). Blended Enriched Virtual Model for the Prediction of Students’ Performance Using Probablistic Based Model. In: Balas, V.E., Jain, L.C., Balas, M.M., Baleanu, D. (eds) Soft Computing Applications. SOFA 2020. Advances in Intelligent Systems and Computing, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-23636-5_11

Download citation

Publish with us

Policies and ethics